

 ©2013 Good Technology, Inc. All Rights Reserved.

Security Testing

Standards and Procedures
Rev 0.9

SecureSDLC

 Table of Contents Rev 0.9 (31-Jul-13)

 Secure SDLC: Security Testing Standards and Procedures Page ii

Revision History

Date

Section(s)
Affected

Made By

Action Performed

 Table of Contents Rev 0.9 (31-Jul-13)

 Secure SDLC: Security Testing Standards and Procedures Page iii

Table of Contents

Revision History .. ii

Table of Contents .. iii

1 Purpose and Scope .. 1

2 Introduction .. 1

3 Good’s Security Development Lifecycle (SDL) .. 1

3.1 Security Lifecycle Overview ... 1

3.2 Phase 1: Inception (Ideas) ... 2

3.3 Phase 2: Release Planning ... 3

3.4 Phase 3: Scrum .. 4

3.5 Phase 4: Validation .. 4

3.6 Phase 5: Release ... 5

3.7 Phase 6: Production .. 5

4 Melding Agile with Security ... 6

4.1 Security Education .. 6

4.2 Security Implications Review.. 7

4.3 Threat Modeling: The Cornerstone of the SDL .. 7

4.4 Secure Design Review (SDR) .. 7

4.5 Tooling and Automation .. 7

4.6 Penetration and Fuzz Testing ... 7

5 SDL Practices and Procedures .. 8

5.1 Security Implication Review ... 8

5.2 Threat Modeling ... 9

5.2.1 Modeling Stage 10

5.2.1.1 Decompose the Application 10

5.2.1.2 Map the Data Flows 11

5.2.1.3 Review the Security Profile 13

5.2.2 Description Stage 13

5.2.2.1 Complete a STRIDE Assessment 13

5.2.2.2 Document the Threats 14

5.2.3 Prioritization Stage 15

5.2.3.1 Rate the Original Risks 15

5.2.3.2 Mitigate the Threats 16

 Table of Contents Rev 0.9 (31-Jul-13)

 Secure SDLC: Security Testing Standards and Procedures Page iv

5.2.3.3 Rate the Residual Risks 17

5.2.3.4 Optional Use of Microsoft’s Threat Modeling Tool 17

5.2.4 Replace General Mitigation Actions with Concrete Security Requirements 18

5.2.5 Update the Threat Model 18

5.2.6 Prioritize Security Requirements Using DREAD Scores 18

5.3 Advise Product Owner – Jointly Agree on Priorities... 19

5.4 Complete Secure Design of Prioritized User Stories .. 19

5.5 Modify User Story with Security Requirements and Design................................... 20

5.6 Secure Design Review (SDR) .. 20

5.7 Secure Coding and Security Testing Practices ... 22

5.7.1 Multiple Independent Levels of Security (MILS) 22

5.7.2 Defensive Programming 22

5.7.3 Security Testing 23

5.7.3.1 Discovery 23

5.7.3.2 Vulnerability Scan 23

5.7.3.3 Vulnerability Assessment 23

5.7.3.4 Security Assessment 24

5.7.3.5 Penetration Test 24

5.7.3.6 Security Audit 24

5.7.3.7 Security Review 24

5.8 Proper Release Documentation and Secure Packaging ... 24

5.9 Incident Management .. 24

5.9.1 Containment 25

5.9.2 Eradication 25

5.9.3 Recovery 25

5.9.4 Post-Incident Analysis 26

5.10 End-of-Life (EOL) Security Policy ... 26

5.10.1 Sunsetting Criteria 26

5.10.2 Information Disposal and Media Sanitization 26

6 Software Security Principles ... 27

6.1 Reduce the Attack Surface ... 27

6.2 Secure by Design Not Afterthought ... 27

6.3 Insider Threats as the Weak Link ... 28

6.4 Assume the Network is Compromised ... 28

6.5 Secure by Default .. 29

 Table of Contents Rev 0.9 (31-Jul-13)

 Secure SDLC: Security Testing Standards and Procedures Page v

6.6 Defense in Depth ... 29

6.7 Principles for Reducing Exposure.. 29

6.8 The Insecure Bootstrapping Principle ... 29

6.9 Input Validation .. 29

6.10 Security Ethics ... 30

7 High-Level Security Requirements .. 30

7.1 Confidentiality Requirements ... 30

7.2 Integrity Requirements .. 31

7.3 Availability Requirements ... 31

7.4 Authentication Requirements ... 32

7.5 Authorization Requirements ... 33

7.6 Auditing/Logging Requirements .. 34

7.7 Session Management Requirements .. 34

7.8 Errors and Exception Management Requirements ... 35

7.9 Configuration Parameters Management Requirements .. 35

7.10 Sequencing and Timing Requirements .. 35

7.11 Archiving Requirements ... 35

7.12 Internationalization Requirements ... 35

7.13 Deployment Environment Requirements ... 36

7.14 Third-Party Software Procurement Requirements .. 36

7.15 Antipiracy and Anti-tampering Requirements ... 36

8 Common Software Vulnerabilities and Controls .. 37

8.1 OWASP Top 10 .. 37

8.2 CWE Top 25 .. 38

8.3 OWASP Top 10 Mobile Risks .. 40

8.4 OWASP Top 10 Cloud Security Risks .. 40

 Purpose and Scope Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 1

1 Purpose and Scope
This document is designed to serve as an orientation and procedural reference guide for company
personnel whose direct focus is on the technical aspects of secure software design and security
assurance. Its expanded audience includes department and line management, product owners,
architects, developers, integrators, test engineers, field support technicians, marketing and sales
specialists, and others on a need-to-know basis. Its scope covers software security-related issues
throughout Good’s SDLC from inception through production.

2 Introduction
To be demonstrable and effective, security engineering practices must be documented, actionable,
measurable, testable, traceable, related to identified business needs or opportunities, and defined to a
level of detail sufficient to achieve a secure system design and implementation. A systematic approach to
security requirements avoids generic lists of features and directly takes into account the attacker
perspective.

Good’s SDL is in place to help its software engineering teams build security into the early stages of
product development in a structured, repeatable, and measurable way. It is based on extensive research
and field work in which the system resources of many development life cycles were decomposed to
create a comprehensive set of security requirements. These resulting requirements form the security
basis of Good’s Best Practices, which systematically address vulnerabilities that, if exploited, could result
in the failure of basic security services (e.g., confidentiality, authentication, and authorization).

Section 3 of this document presents an overview of the security lifecycle followed by thumbnails of each
phase. Sections 4 lays to rest any contention that Agile and a robust SDL are in any way incompatible.
Section 5 sets forth the general SDL practices and their procedural aspects along with the intended
results. Section 6 elaborates the company’s core security principals and secure design fundamentals.
Section 7 outlines the company’s high-level security requirements for its software products. Section 8 lists
the most common software vulnerabilities and controls for easy reference.

3 Good’s Security Development Lifecycle (SDL)
Driving the company’s overall software development life cycle, Good’s SDL embodies a consistent
process of safely creating and altering the company’s products, systems, and applications, as well as the
models and methodologies used to develop them. Delivering end-to-end security with every Good product
is the paramount objective throughout.

3.1 Security Lifecycle Overview

Overall, the SDL encompasses the same six phases as the SDLC:

 Ideas (also called Inception)

 Release Planning

 Scrum

 Validation

 Release

 Production

Feature and performance (non-functional) requirements are typically initiated and gathered from outside
of the company’s engineering environment, resulting either from market intelligence or directly
proposed/requested by customers in consultations with their Good account representative. With rare
exception, security requirements are generated and defined internally by the company’s security
experts—architects, developers, IT security analysts, QA engineers, and field incident response
specialists—who closely and continuously monitor the technology horizon for potential exploitables,

 Good’s Security Development Lifecycle (SDL) Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 2

malware, and the latest industry-identified attack vectors. These requirements are then carefully defined
for all Good products and incorporated by reference into Good’s standing security policies.

Seen in Figure 1, during the Ideas (requirements gathering) phase of the SDLC and before passing
beyond it, the security implications of a feature request or change are reviewed against the current body
of security requirements—high-level, low-level, and those impacting Good’s secure development
infrastructure. High-level requirements govern protection mechanisms against broad potential
vulnerabilities, whereas low-level requirements are geared to specific functionality and/or components.
Security requirements that apply to the development infrastructure relate to intranet security, source
control access, defect tracking and control tools, configuration management, QA test environments, and
staging and production environments preparatory to deployment.

Figure 1: Good's Secure Software Development Life Cycle (SDLC)

During Release Planning, those user stories selected for development from the product backlog that
have been flagged with security implications undergo a security design at the architecture level that
initially satisfies all applicable standing security requirements. The modified architecture is then threat
modeled to determine/isolate potential exploitables. Only upon formal approval after a secure design
review (SDR) by security architects can the new story advance along with the appropriate security test
cases to the Scrum phase for implementation.

An additional security “gate” (the dotted line boundaries in Figure 1) involving robust regression testing
must be passed during Validation for the release candidate to gain a “Go” for Release, either as a
Priority Access (PA) release to select customers or a General Availability (GA) release to the market at
large. Upon successful staging, the software enters Production, where any dependency patches are
monitored, incident handling is carefully tracked and analyzed, and security performance audits are
routinely carried out.

3.2 Phase 1: Inception (Ideas)

As shown in Figure 1, Inception begins with the translation of customer requirements by the product
owner into user stories that encapsulate the functional demands needing to be satisfied. User stories

take the short form: “As a <type of user>, I want <some goal> so that <some
reason>” or a variation thereof. Larger, more complex requirements are translated
into broad user stories called “Epics” sufficient to frame the essence of the

requirement in terms of intent and expected result.

Each user story is then run through a “Security Implication Checklist” to determine its
potential vulnerabilities, if any. The checklist currently comprises 12 general questions.

 Good’s Security Development Lifecycle (SDL) Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 3

1. Does the story involve authenticating user credentials or trusting host/component credentials or
handling user/system credentials?

2. Does the story require adding/deleting/updating an authentication/authorization mechanism?

3. Does the story require opening/adding new interfaces? Examples include:

a. New remotely accessible services

b. Adding a new RPC interface or adding more procedures to existing ones such as XML
GW

4. Does the story require security services provided by external entities like Kerberos, Radius, etc.?

5. Does the story involve building transport to send user data?

6. Does the story involve creating and updating security operations including any of the following:
confidentiality, integrity, authentication, authorization, auditing, and/or any input/output sanitation
operations?

7. Does the story involve detecting unauthorized OS-level modifications like jailbreak/rooted
detection, altered binaries or configuration files, etc.?

8. Does the story involve any type of compliance or secure state check?

9. Does the story require adding/removing/updating any security related OS-level or third-party
component?

10. Does the story require changes to the existing role model; e.g., creating/updating/deleting rights?

11. Does the story involve adding/updating/removing user/enterprise data from a device?

12. Does the story involve handling payment or personally-identifiable information (PII) data?

If the answer to any of the foregoing is affirmative, then this user story has security implications.

Next, based on the nature and extent of its security implication(s), the story is appropriately tagged or
flagged in Rally and prioritized in the product backlog for threat modeling, security design, and secure
design review.

3.3 Phase 2: Release Planning

The goal of release planning is to estimate roughly which features will be delivered by the release
deadline. The initial plan rarely satisfies all parties: either not enough functionality will be delivered or it

will take too long to deliver what’s been requested and promised. At Good, the
team and stakeholders are expected to look these hard truths in the face and
plan around them. There are no scope miracles that will satisfy everyone, so

the development team must use real metrics and negotiation to make hard
choices as close to the start of the project as possible. Consequently, although

the initial release plan is understood by everyone to be rough, it must be detailed
enough to start development. And, among the most pressing details at this stage
are identifying and mitigating any security vulnerabilities and weaknesses.

In fact, until its security requirements are satisfied in a high-level design, a user story cannot move
forward to the next phase. A high-level design consists of UML diagrams and/or flow charts adequate to
depict component relationships, dependencies, and interface boundaries. These are used to analyze the
data flow (type and direction) crucial to the threat modeling and secure design review process
outlined in Sections 4 below.

Illustrated in Figure 3 on page 8, threat modeling ascertains/isolates known security issues and then
maps them to an appropriate mitigation action that eliminates or reduces the risk. These mitigation
actions, further defined and prioritized in a residual risk matrix, are then ranked according to their impact
on the desired functionality and the existing architecture—less impact, higher priority. If the level of
priority is jointly accepted by the architects and the product owner, the user story, now paired with its
security requirements, is used by core architects to design a secure solution. When the secure design is
complete, it is formally reviewed by the architects for compliance with Good’s security standards. Once
SDR-approved, the design is made available for development according to its assigned priority in the

 Good’s Security Development Lifecycle (SDL) Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 4

release backlog. The original user story can now be modified to reflect its new secure design and security
requirement and proceed to the Scrum phase of the SDLC.

3.4 Phase 3: Scrum

Scrum is the iterative and incremental Agile software development framework adopted by Good. In
Scrum, rather than documenting complete, detailed descriptions of how everything is to be done on the

project, much is left up to the software development teams, called Scrum
Teams. Each team is self-organizing and cross-functional. Hence, the Scrum
phase of the SDLC makes progress in a series of timeboxed iterations called

sprints, each lasting no more than a month. At the start of a sprint, team
members commit to delivering some number of features in the release backlog—

those stories slated for the current release that have been drawn from the larger
product backlog. By the end of the sprint, these features are “done,” which means they are coded, tested,
and integrated into the evolving product. To conclude each sprint, a sprint review is conducted during
which the team demonstrates the new functionality to the product owner and interested stakeholders,
receiving feedback that could influence the next sprint.

From a security standpoint, the Scrum phase must ensure that secure coding techniques like defensive
programming are used to minimize potential vulnerabilities. Consistent with Good’s test-driven
development paradigm, the security test cases generated from the threat model are run by special
security testers—threat experts capable of simulating attacks using a variety of penetration techniques—
to assure that the new feature/functionality is performing securely and up to the tolerances specified in
the design. Security defects and shortcomings are managed in Good Defect Manager like all other bugs.
As influential stakeholders, the security assurance team also takes part in Scrum ceremonies as
appropriate. See Secure Agile @ Good for a more complete discussion of Good’s Scrum process and
ceremonies.

3.5 Phase 4: Validation

With its new features implemented, the software enters the Validation phase of the SDLC, which entails
full regression testing to make sure the product as a whole is “ready-for-release.” The four levels of
validation testing, carried out for both the functional and non-functional (performance-scalability-reliability)
attributes of the software, consist of:

 Unit Testing – also known as component testing, wherein the aim is
to search for defects within a specific software unit while verifying
the functioning of different software components like modules,
objects, classes, etc., which can be tested separately.

 Integration Testing – to confirm the correct and intended
interaction between the different interfaces of the components, as well as the interaction of the
system with the OS, file system, hardware, and any other software systems with which it might
interact.

 System Testing – in which the focus is to check the behavior of the whole system against what
was specified in its design, rather than testing the individual internals.

 Acceptance Testing – to determine whether the product meets the established customer
acceptance criteria. There are four types of acceptance testing: operational acceptance testing,
compliance acceptance testing, Alpha testing, and Beta testing.

Defined in Section 7 and conducted concurrently with validation testing and an eye to penetrating all
implemented defenses, final security testing covers:

 Confidentiality

 Integrity

 Availability

 Authentication

 Good’s Security Development Lifecycle (SDL) Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 5

 Authorization

 Auditing

 Session Management

 Errors and Exceptions Management

 Configuration Parameters Management

 Sequencing and Timing.

Final security validation testing is conducted by the same security assurance team described in the
Scrum phase. Constituting another phase gate in combination with the validation test results, the outcome
of final security testing is a pass/fail determinant for making the Go/No-Go decision for the release.
Insofar as the security aspect, to the extent that only risk-acceptable vulnerabilities remain, the software
is ready to be released, pending appropriate written notification of those risks in the release
documentation.

3.6 Phase 5: Release

The release phase of the SDLC spans several stages necessary for objective evaluation and to generate
important feedback on performance and usability as well as to detect and eliminate defects still present in

the software. Shown in Figure 2, these release stages or versions can include:
Alpha, Beta, Release Candidate, Priority Access (PA), General Availability

(GA), and the final Production or Live Release.

From both a security and a usability perspective, each stage requires the
appropriate documentation necessary to install, configure, and operate the backend

system, in addition to provisioning mobile devices for monitoring and control by the system.

Figure 2: Release Stages

A description of new features and added/enhanced functionality must also be provided with the software,
along with technical information concerning known performance and security limitations and the
associated risks. Areas of the documentation involving security must be reviewed for accuracy and clarity
by the security assurance team.

Although Good’s well established safeguards and precautions with respect to the secure packaging of all
software released externally are normally sufficient to provide tamper-proof and error-free download and
unpacking on recognized and pre-approved customer computer systems and supported devices, a
thorough check and re-examination of these packaging measures should be conducted by the security
assurance team at each stage of release to ensure continued adequacy and protection against
unauthorized interception or the insertion of malware.

The objective of each release and each stage thereof is to logically and demonstrably build on its
predecessor in terms of quality and completeness, culminating in a final production release that is as
secure and defect-free as possible under the given time and resource constraints.

3.7 Phase 6: Production

It is essential that all software in its production phase receive the necessary
support to maintain and extend product performance within each customer’s IT
environment as agreed, ensuring that the customer has or is provided with:

 Certified Version – the latest version of the software certified for
production use.

 Maintenance Patches – designed to fix reported issues and repair
defects, including fixing security vulnerabilities and other bugs, and improving usability or

 Melding Agile with Security Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 6

performance. These are distributed as binary executables that modify the current program
executable.

 Service Packs – periodically released to fix defects, configuration flaws, and recently discovered
performance issues; these are made available when the number of individual patches to a given
major release reaches the designated limit for that product and are more easily managed and
shipped as a package.

 Hot Fixes – urgent repairs or additional (re-)engineering of the program code escalated to an
emergency condition based on a reported/recorded incident that demands an immediate and
sustainable solution.

 Online Support Forum and Knowledgebase – a web-based forum for users to discuss issues
and other product software-related topics with the benefit of input from Good’s technical experts
combined with access to a collection of online articles and information resources identifying
common issues and how to resolve or work around them.

During the production phase, the security team provides continuous, proactive security support to all
deployed systems sold/licensed and maintained by Good. In addition, all internal and external
environments are monitored in relation to factors that can impact software security. In accordance with
Good’s Incident Management Plan, the main security objective here is to:

 Analyze and interpret events with a security impact

 Identify and prepare incident responses

 Monitor changes in environments; changes in security vulnerabilities, threats, and risks; and in
their characteristics

 Continuously review software security behavior to identify necessary changes

 Verify that necessary changes have been properly implemented

 Perform periodic security audits.

All of the above extends to planned maintenance patches and emergency hot fixes consistent with the
software security engineering practices employed during development.

4 Melding Agile with Security
Integrating the two is not as difficult as it may seem. In fact, one benefit of the SDL is that it is relatively
artifact-free, meaning there is little documentation overhead with the notable exception of threat models,
which are discussed presently. The mandatory tasks within the SDL-Agile framework include:

 Security Education

 User Story Security Implications Review

 Threat Modeling

 Secure Design Review (SDR)

 Tooling and Automation

 Penetration and Fuzz Testing

Each is briefly touched on next with the procedural mechanics outlined in Section 5.

4.1 Security Education

Every member of the technical staff must complete at least one security training course every year. If
more than 20 percent of the teams are out of compliance with this non-negotiable requirement, the SDL
will fail and delivered releases cannot be deemed securely designed and implemented.

Acquiring security knowledge can be as simple as reading appropriate chapters in an approved book or
watching approved/recommended online training media. The areas of security knowledge that must be
collectively covered by the teams include each of the requirements listed in Section 7: High-Level
Security Requirements.

 Melding Agile with Security Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 7

4.2 Security Implications Review

After a user story is created its security implications must be analyzed against the prevailing checklist
issued by the security architects (see sample checklist on page 2). If there are no implications, the story
can proceed directly to release planning and development. But if the story has security implications, it
must be threat modeled and its functionality securely designed before proceeding to the Scrum phase.
For details, see Section 5.

4.3 Threat Modeling: The Cornerstone of the SDL

Like many Agile processes, the threat model process is time-boxed and limited to only the parts of the
product that currently exist or are in development. The threat model baseline in place at Good is a critical
part of securing a product because it helps to:

 Determine potential security design issues

 Drive attack surface analysis and most “at-risk” components

 Drive the fuzz-testing process

After any modifications to the product, the threat model must be updated to represent any significant
design changes, even if the functionality remains the same.

The threat modeling process is discussed in more detail in Section Error! Reference source not found..

4.4 Secure Design Review (SDR)

After completing the threat modeling process, the security requirements identified are translated into
security stories with the goal of generating a design that fulfills all of the security requirements while
minimizing any impact on functionality. When the design is complete, it must be formally approved by
Good’s architects. Pending the outcome of the SDR, the user story cannot move forward. If approved, it
can now proceed beyond release planning and on to development (Scrum). If rejected, it is returned to
the security architect to improve the design. Refer to Section 5.6 for more on SDR.

4.5 Tooling and Automation

The more you can automate the work necessary to meet requirements, the easier security becomes.
However, where security is involved, tools are not a replacement for humans, but they do offer scalability.
Nonetheless, simply running tools does not make a software product more secure.

Good’s current security-related tool chest includes:

 {need to populate this appropriately}

4.6 Penetration and Fuzz Testing

Good’s Pen Testers apply their skills to thwarting implemented countermeasures just like a crafty attacker
on the outside by attempting to penetrate product security. They likewise will seek to insert malware or
steal/damage data. Their job is a success only when they are unsuccessful.

Fuzz testing is an automated or semi-automated technique that provides invalid, unexpected, or random
data as user inputs. The system under test is then monitored for crashes, failing built-in code assertions,
and potential memory leaks.

The beauty of fuzz testing is that once a computer or group of computers is configured to fuzz the
application, it can be left running, and only crashes need to be analyzed. If there are no crashes from the
outset of fuzz testing, the fuzz test in probably inadequate, and a new task needs to be created to analyze
why the fuzz tests are failing in order to make the necessary adjustments.

The threat model determines which portions of the application to fuzz test, as well as the order in which
entry points are fuzzed. For example, remotely accessible or unauthenticated endpoints are higher risk
that local-only or authenticated endpoints.

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 8

5 SDL Practices and Procedures
Summarized above, additional details on SDL requirements and practices are presented in this section
under caveat that because the threat horizon is dynamic and evolving, so also must Good’s security
practices and procedures be. Ergo, this is a living document subject to change, so make sure you are
reading the latest update before implementing the procedures set forth.

That said, during the critical early phases of the lifecycle—Inception and Release Planning—the process
flow in Figure 3 governs all new features and functionality entering the development pipeline.

Figure 3: Early Phases of the SDL (Threat Modeling through Secure Design)

The goal is to identify security vulnerabilities and address potential threats with appropriate
countermeasures in a logical order, starting with the threats which present the greatest risk or could result
in the greatest damage. After which, appropriate threat elimination/mitigation options are selected or
devised and updated in the threat model. Next, the business value of adding the new functionality is
weighed against the impact of any residual risk to the existing architecture and ranked from high to low.
Then, jointly with the product owner, the architects vote to accept or reject each tradeoff.

If rejected, the user story does not move forward.

When accepted, a secure design of the new feature which supports the agreed tradeoff, if any, is
completed by the core architects. The design is then subjected to a secure design review (SDR). If the
review board approves, the design is made available to the assigned developers and security test
engineers. The former must modify the affected user stories in Rally based on the design’s security
requirements, while the latter generate security-specific test cases to be run against the coded
implementation. Based on the revised story, functional QA can now create suitable test cases as the
team moves forward with implementation.

The major elements of the process captured in Figure 3 are each discussed in turn below.

5.1 Security Implication Review

Depicted in Figure 4 below, after creating a new story, it must be assessed against the standing checklist
for security implications described in Section 3.2. This is not only a critical milestone in the evolution of
the story, it is crucial to the maintenance of the product’s secure architecture, which makes the product
owner ultimately accountable for seeing it done. POs possessing insufficient technical proficiency in
software security should enlist members of the assigned scrum team who do to assess the implications,

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 9

but in all cases a user story with security implications must be flagged in Rally. Otherwise, the
architecture team has no way to identify it as a candidate for threat modeling and secure design. The
step-by-step sequence to follow is shown in Figure 4.

Figure 4: Flag Any Security Implications in Rally

The two essential steps are:

1. Create the User Story in Rally.

2. Run it through the Security Implications Checklist (i.e., answer the questions). If the answer to
any checklist item is readily yes, flag the user story for Secure Design Review. If the answer to a
checklist item is unknown at the present time, flag the user story for review. DO NOT GUESS.
When in doubt, request a review for all security matters.

Flagged stories are put in queue for a biweekly security checklist review by the extended architecture
team (XAT). Upon completion of the review by the XAT, if security issues indeed exist, the proposed
feature is subjected to the full threat model process diagrammed below and described in the next section.

5.2 Threat Modeling

Per the recommendation of OWASP, Good’s threat modeling process is adapted from the threat modeling
process developed by Microsoft, which is comprised of four basic
steps:

1. Diagram the application in a data flow.

2. Identify any threat risks.

3. Devise countermeasures to eliminate the risk or mitigate its
impact.

4. Validate the chosen security solution.

Good’s adaptation extends the basic Microsoft threat model to the one
shown in Figure 5.

Figure 5: Basic Threat Modeling Process

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 10

Before diving too deeply, however, it is important to remember that the objective of threat modeling is to
define a holistic set of mitigation actions corresponding to known (identified) and/or suspected threats at
the lowest possible level (finest granularity) with the goal of removing, reducing, transferring, or accepting
the security risk without adversely affecting product functionality, usability, or performance. The model
must then be appropriately updated to reflect any product change carrying security implications.

The threat risk analysis exercise is therefore divided into three major parts or stages:

 Modeling – to understand how the new feature will be fitted into the existing architecture.

 Description – to describe in detail each element-threat duple (or pair), including attack vectors,
attackers and possible impacts.

 Prioritization – to quantify, compare, and rank the amount of risk presented by each evaluated
threat.

The actual nuts and bolts of the process are significantly more involved, as we’ll see next, beginning with
the modeling stage.

5.2.1 Modeling Stage

Modeling forces developers to adequately understand a new feature and how it fits
within the existing architecture in order to accurately assess the security implications
of the change. This starts with the creation of a high-level architecture diagram
describing the composition and structure of the application and its subsystems as
well as its physical deployment characteristics. Figure 6 is one example of such a
high-level design.

Figure 6: Example of a High-Level Design

Depending on the complexity of the system, you may need to create additional diagrams that focus on
different areas; for example, a diagram to model the architecture of a middle-tier application server or one
to model the interaction with an external system.

5.2.1.1 Decompose the Application

Next, you break down your application to create a security profile based on traditional areas of
vulnerability while documenting the security profile; at the same time, identifying trust boundaries, data
flow, entry points, and privileged code.

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 11

Also consider server trust relationships. Does a particular server trust an upstream server to authenticate
and authorize end users, or does the server provide its own gatekeeping services? As well, does a server
trust an upstream server to pass it data that is well formed and correct?

Ergo, follow a series of concrete, repeatable steps that include:

1. Identifying trust boundaries

2. Identifying data flow

3. Identifying entry points

4. Identifying privileged code

5.2.1.2 Map the Data Flows

Schematically, some or much of this information should already be in hand from previous modeling and
should be readily adopted. In any case, the current modeling exercise eventually results in a new
product/feature definition using a finite set of elements in a data flow diagram (DFD). These elements
include the identified external entity/interactors, processes, data stores, and data flows. Trust boundaries
are represented by a dotted line or arc crossing a data flow, similar to the example in Figure 7.

Figure 7: Context-Level Data Flow Diagram (DFD)

Trust boundaries are demarcation points in the application that show where data moves across areas of
differing privileges or trustworthiness. They are important in modeling threats because they represent
possible avenues of attack.

As the modeling proceeds, each DFD level is expanded until all of the following conditions are met:

a) There are no complex processes (those depicted with double circles).

b) No conditional or exceptional situations are required to explain the diagram.

c) The diagram contains all necessary information to explain any security implication of the design.

Figure 8 and Figure 9 show examples of successively detailed diagramming.

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 12

Figure 8: Level-0 DFD

Figure 9: Level-1 DFD for Order Processing

LEGEND:

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 13

DFDs track how data enter, leave, and traverse the system, showing sources and destinations, relevant
processes that data goes through, and trust boundaries. Whether building a new system or extending an
existing one, the purpose is to examine how an intruder might go about attacking it so that appropriate
defenses can be built and maintained.

5.2.1.3 Review the Security Profile

Next, you should review and confirm the product/system/application design and implementation
approaches used for input validation, authentication, authorization, configuration management, and the
remaining areas where applications are most susceptible to vulnerabilities. Whether already on paper
(preferably) or recalled from memory, by doing this, you are creating an updated security profile which will
serve you well in the next two stages.

With the security profile in hand and the appropriate level of diagramming complete, the threat description
stage can begin.

5.2.2 Description Stage

Here we describe in detail each element/threat duple, including attack vectors,
attackers and possible impacts. Good has adopted Microsoft’s STRIDE threat
taxonomy—or classification technique—to identify all threats associated with each
element type in the DFDs. In conjunction with STRIDE, scoring/ranking each
identified threat is done using a modified version of Microsoft’s DREAD threat
scoring mechanism.

5.2.2.1 Complete a STRIDE Assessment

STRIDE stands for:

Spoofing = threats that abuse authentication mechanisms
Tampering = threats that abuse the integrity of data and binaries
Repudiation = threats that abuse non-repudiation mechanisms
Information Disclosure = threats that abuse confidentiality mechanisms
Denial of Service = threats that abuse the availability of processes and/or data
Elevation of Privilege = threats that abuse authorization mechanisms

STRIDE thus narrows the search space for exploitable product/system/feature security weaknesses down
to only those potential abuses capable of directly affecting the given DFD element. For instance, when
analyzing data flow elements of the model, the focus is kept on tampering, information disclosure, and
DoS threats, since only these carry potentially applicable STRIDE risks. The correlation of DFD elements
with their applicable STRIDE threats is summarized in Figure 10.

Figure 10: Threats Affecting Each Element Type

Note: The question mark listed for “Data Store–Repudiation” merely indicates that repudiation threats
could affect data stores if and only if the data store contains some type of audit log.

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 14

Evaluating the complete DFD against all applicable STRIDE threats to determine how the system could
fail means that for each element/threat the following must be adequately considered and assessed:

 Possible attackers (both internal and external)

 Intention (malicious vs. accidental/inadvertent)

 Attack vector

 Complexity of attack

 Impact of attack

Placed into perspective, the threat model for Good for Enterprise (GFE) currently contains more than
4,200 elements/threats.

Hence, due to the expanding size and complexity of Good’s product threat models, the
investigative/analytical work is typically delegated to those SMEs capable of building comprehensive
checklists for their application(s) or area of concern because they understand the relevant technologies.
For example, the networking team is best equipped to investigate information disclosure vulnerabilities
associated with the network data flow.

5.2.2.2 Document the Threats

Once all DFD elements have been associated with a STRIDE threat, a documented description of the
identified threat, likely attackers, attack vectors, and potential impacts on each affected element must be
completed. Good’s threat modeling template in MS Word or the MSF threat modeling tool is ideal for this
purpose. A partial example using the template (Table 1) to elaborate STRIDE for a GFE element would
be:

Table 1: STRIDE Threat Description

DF15 - Auth info (license key, serial), device info, Updated MDM profile

Threat Impact Mitigations

Tampering (DF15-T) This data flow transports authentication
information from GMC to NOC (WebApp web
services) for MDM update support during regular
operations.

The most likely attacker is an external attacker
located in a network location where traffic could
be intercepted. In cases where the attacker can
successfully modify this data flow, he could also
intercept and have access to the content of any
GMC->WebApp data flow. This would provide
direct access to GMC credentials (to impersonate
this system later), manipulate content to remove
devices (DoS for some devices), etc. It would also
provide access to sensitive information such as
configuration parameters in MDM profiles, URL
IDs, etc.

No corporate PIM data would be at risk due to
end-to-end encryption.

Some other ancillary network attack techniques
would be necessary to redirect traffic (e.g. DNS
poisoning, etc.) and knowledge of the application
protocol.

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 15

5.2.3 Prioritization Stage

With the threat model now adequately describing all possible threat scenarios/
attackers/impacts for the entire list of elements and identified threats, a rating of
original risk is undertaken.

However, accurately calculating the widely accepted measure of risk (risk equals the
chance of attack multiplied by the damage potential) is not always an easy task. That
is why we use DREAD scores.

5.2.3.1 Rate the Original Risks

DREAD stands for:

Damage Potential = How bad would an attack be?

Reproducibility = How easy is it to reproduce the attack?

Exploitability = How much work is required to launch the attack?

Affected Users = How many users will be impacted?

Discoverability = How easy is it to detect and identify the threat?

The DREAD mechanism qualitatively factors in security-related aspects to derive a value between 0 and
15 for each element-threat incident identified using STRIDE. Thus, DREAD rates the potential risk of a
threat by applying the following weights:

3 = High

2 = Medium

1 = Low

0 = N/A or non-existing.

Each is measured using the criteria in Table 2.

Table 2: DREAD Risk Scoring

 DREAD Rating

 High (3) Medium (2) Low (1) N/A (0)

Damage Potential

Attacker can subvert the
security system; get full
trust authorization; run as
administrator; upload
content

Leaking sensitive
information

Leaking trivial
information

No information is
compromised

Reproducibility

Attack can be reproduced
every time and does not
require a timing window

Attack can be reproduced,
but only with a timing
window and a particular
race situation

Attack is difficult to
reproduce, even
with knowledge of
the security hole

No attack is
currently feasible

Exploitability

A novice programmer
could make the attack in a
short time

A skilled programmer could
make the attack, then repeat
the steps

Attack requires an
extremely skilled
person and in-depth
knowledge every
time to exploit

No attack is
currently feasible

Affected Users

All users, default
configuration, key
customers

Some users, non-default
configuration

Small percentage of
users, obscure
feature; affects
anonymous users

No user is affected

Discoverability

Published information
explains the attack. This
vulnerability is found in the
most commonly used
feature and is very
noticeable

Vulnerability is in a seldom-
used part of the product and
only a few users should
come across it. It would take
some thinking to see
malicious use

The bug is obscure
and it is unlikely any
user will work out
damage potential

No attack is
currently feasible

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 16

Applying STRIDE to the Tampering threat example in Table 1 would result in a DREAD score of 9.

5.2.3.2 Mitigate the Threats

Available actions that could reasonably mitigate a security risk include:

 Threat Elimination

 Threat Reduction using standard countermeasures

 Threat Reduction using new countermeasures

 Risk Assumption

 Risk Transference

Clearly, complete elimination of risk is the ideal solution, usually achieved with redesign; for example,
removing and replacing the attack-vulnerable interface, presuming a ready and viable alternative is
handy. Here, in addition to adequate performance, viability demands a management-approved cost
benefit.

Reducing the risk by implementing standard countermeasures, like PKI, is the favored solution. There are
a variety of other proven countermeasures already established in Good’s arsenal that can be leveraged
as well.

Devising new countermeasures—creating a new (proprietary) security protocol or encryption
mechanism—is considered the change option of last resort, since new algorithms and implementations
could adversely affect already secure and stable aspects of the design and lead to certification issues
(i.e., Common Criteria, FIPS, etc.).

Sometimes, expressly assuming (accepting) a particular risk after performing an informed evaluation of
the possible impacts is the best way to handle the issue; for example, performing OTA with an emailed
PIN. This is only acceptable under certain circumstances and with senior technical management approval
when no other technical solution is available or feasible.

Another mitigation option is transferring the risk to the customer and/or users by making them aware of—
and, hence, accountable for—the possible security impact. This usually occurs only when the customer
wants the affected feature or component despite the potential risk, generally pending an adequate
workaround in the near-term, coupled with longer-term reduction or elimination of the risk.

In all cases, mitigation actions are a collaborative determination made by Good’s security architects and
engineers defined in a broad form—e.g., “Every system in the GFE solution must establish mutually
authenticated channels before starting or processing any remote requirement.” Conversely, it is also
possible to directly define concrete security requirements like “XMLGW must use TLS v1.2 with client-side
authentication using X.509 v3 certificates created by Good Technology’s intermediate CA1.”

Extending the template example in Table 1 to include mitigation actions already defined in the current
threat model produces the result in Table 3.

Table 3: Identified Threat Instance with Mitigation Actions

DF15 - Auth info (license key, serial), device info, Updated MDM profile

Threat Impact Mitigations

Tampering (DF15-T) This data flow transports authentication
information from GMC to NOC (WebApp web
services) for MDM update support during regular
operations.

The most likely attacker is an external attacker
located in a network location where traffic could
be intercepted. In case the attacker can
successfully modify this data flow, he could also
intercept and have access to the content of any
GMC->WebApp data flow. This would provide
direct access to GMC credentials (to impersonate

- (MA-46) All GFE systems must create and use
secure channels to interact with other GFE
servers.

- (MA-70) GFE servers should not send any
credential in the clear or any value derived from
a credential that could be used to obtain the
actual credential.

- (MA-41) GFE systems should not send any
credential to unauthenticated external database
servers.

- (MA-3) The GFE’s preferred authentication
mechanism for inter-system communications is

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 17

DF15 - Auth info (license key, serial), device info, Updated MDM profile

Threat Impact Mitigations

this system later), manipulate content to remove
devices (DoS for some devices), etc. It would also
provide access to sensitive information such as
configuration parameters in MDM profiles,
URLIDs, etc.

No corporate PIM data would be at risk due to
end-to-end encryption.

Some other ancillary network attack techniques
would be necessary to redirect traffic (e.g. DNS
poisoning, etc.) and knowledge of the application
protocol.

digital certificates for both clients as servers.
- (MA-18) When using digital certificates all GFE

systems must successfully identify the other
party in such a way that Common Name or
Distinguished Name fields of the presented
certificate match the host name or username of
the system or human user respectively. This
identification process must be enforced before
any further processing.

- (MA-30) When using digital certificates all GFE
systems must perform certificate validation
according to RFC5280. This validation process
must be enforced before any further processing.

Note: If this component uses secure channels like
TLS v1.2 with X.509 v3 certificates and it correctly
validates server’s/client’s certificates, this threat
could be considered closed.

5.2.3.3 Rate the Residual Risks

Any residual risk can be estimated only after the associated security requirements have been defined for
each element-threat pair in the previous step. Residual risk is the threat risk remaining after all security
requirements and countermeasures have been implemented.

Table 4 shows a sample threat model scoring spreadsheet correlating elements, threats, original DREAD
scores, mitigation action/security requirement, and reduced DREAD Score (the residual risk).

Table 4: Completed Threat Model Spreadsheet

5.2.3.4 Optional Use of Microsoft’s Threat Modeling Tool

Available at http://www.microsoft.com/en-us/download/details.aspx?id=2955, the Microsoft Solution
Framework (MSF) Threat Modeling Tool is a company-approved aid to help architects and engineers
analyze their designs and software architecture. Depending on preference, use of the tool can be limited
to the description stage or used to aid threat modeling in its entirety. Its benefits include:

 Populating the input forms used in the description phase as DFDs are drawn. For instance, when
a new process is added, the tool creates a description form with all relevant threats. Additionally,
whenever the diagram is modified, the forms are automatically updated accordingly.

 Validating DFDs against common errors like data sinks, i.e., data stores without output data
flows.

 Certifying that some threats do not apply to a particular element (e.g., tampering for an
aggregation data store that is a few levels below an attacker-unique surface).

 Generating basic reports for export to Excel.

While not a commercial grade application, the tool saves significant time when working on big, complex
models.

http://www.microsoft.com/en-us/download/details.aspx?id=2955

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 18

5.2.4 Replace General Mitigation Actions with Concrete Security Requirements

General mitigation actions are preferred to concrete security requirements whenever
models are big or complex. Using general mitigation actions instead of concrete
security requirements also reduces the number of countermeasures, which is
especially handy during the rating and prioritization phase.

Note: Neither the original nor the reduced DREAD scores are changed as a result of
replacing mitigation actions with more concrete security requirements.

Table 5 shows an example of the correct substitutions.

Table 5: Mitigation Action Replacement with Concrete Security Requirements

Original Mitigation Action New Security Requirement

Run exposed daemons under
unprivileged OS-level accounts.

XMLGW must create unprivileged Linux account apache-root without access to any
other group but apache-root. Remove any interactive shell in /etc/passwd file and
block account from being used to gain console access.

GMC must create unprivileged local Windows account (not part of AD) named
tomcat5 with “log on as service” rights and make tomcat runs under this account.
Make sure this account can’t interact with local desktop.

Implement mechanisms to detect
abnormal behaviors consistent with
possible DoS.

GMC must create a login counter that keeps the number of unsuccessful login
attempts. When they reach certain configurable threshold system must apply a
configurable back off algorithm to thwart possible brute force attacks

GMC must implements a centralized input sanitation process that keeps track of
format errors in the same session. If number of error reaches certain configurable
threshold the system must be able to log take a configurable action (e.g. log event,
close session, block user temporarily/permanently, etc.)

The GMC’s web server must implement a maximum/minimum number of child
processes to prevent system resources from being depleted by untrusted requests.

5.2.5 Update the Threat Model

A new, modified or specially devised mitigation action may not be directly replaceable
with a concrete security requirement already in the threat model. In which case, a
new security requirement must be defined/described and the threat model (database)
updated accordingly. And there’s no better time than now to do it, while the relevant
information is still fresh in your mind. DO NOT PROCRASTINATE. Make the updates.

5.2.6 Prioritize Security Requirements Using DREAD Scores

While abstract business and/or customer needs may remain a factor, threat
prioritization can now proceed based on the model’s DREAD scores, wherein priority
is given to those security requirements carrying the most important risk reductions.
This is done by computing the risks with the greatest variance between original and
residual risk according the formula:

DREAD
variance = DREAD

original
 – DREAD

reduced

The higher the DREAD
variance

score, the higher the priority.

Hence, threat ambiguity is resolved with a traceability matrix—basically, a spreadsheet showing:

 WHO – the threat: an agent capable of doing harm to the system or data

 WHAT – the misuse/abuse a threat intends to promulgate

 WHERE – the attack surface on which a threat will conduct a misuse/abuse

 HOW – the specific attack vectors

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 19

 IMPACT – the negative effect on a business objective or violation of policy

 MITIGATION – the column to track risk acceptance, transfer, or mitigation.

An example of a completed traceability matrix is shown in ______.

{Need a spreadsheet sample from Luis}

5.3 Advise Product Owner – Jointly Agree on Priorities

With all security requirements now identified, defined, and prioritized for the user
story in question, the PO is notified of the results; after which, it becomes the product
owner’s responsibility, in consultation with the architects, to determine:

(a) whether or not the business value of adding the functionality to the
current architecture warrants the development work required

(b) if the residual threat risk is acceptable.

If the PO decides the cost-benefit or risk-benefit ratio is prohibitive or at least not worth it at the present
time, the user story does not move forward. It will remain, however, in the product backlog for future
consideration with the advantage that its threat model is already completed and on file.

If both determinations, (a) and (b), are affirmative, the PO can now determine its priority for secure design
completion and subsequent implementation.

5.4 Complete Secure Design of Prioritized User Stories

The swiftest and most dependable way to create the new/changed security design is
to apply a secure design pattern, then make the appropriate, specific adjustments
satisfying the threat modeled requirement(s).

 A secure design pattern is a generally reusable solution to commonly occurring
security issues. It is important to remember that a design pattern is not a finished
design that can be transformed directly into code. Rather, it is a description or template for how to solve a
problem. As indicated above, mitigation actions and secure design requirements address security issues
at widely varying levels of specificity ranging from architectural-level patterns involving the high-level
design of the system down to implementation-level patterns providing guidance on how to implement
portions of functions or methods in the system.

Good, like other software innovators, is under constant pressure to build reliable products that meet all
customer requirements within a short period of time. So architects and developers alike need to rely on
proven practices and methodologies. Design patterns allow them to exploit the previous successes (and
fails) of Good’s collective engineering experience.

The benefits of knowing and using design patterns are several. They reduce development time since
patterns are known solutions for building software systems. They improve software quality because the
solutions are tried and tested. Patterns also improve the communication between development teams by
identifying names and providing structures to many of the same challenges faced by all developers in all
teams.

Design patterns rely on decomposing larger tasks into smaller pieces; isolating and encapsulating the
variable part of the system; extending the behavior of objects with a common base class in a similar
fashion using polymorphism; and loosely coupling the dependent objects to reduce their dependency.
Thus, design patterns are the design equivalent of object-oriented programming.

Good has created numerous secure design patterns by generalizing and cataloging existing best
practices and by extending existing non-secure design patterns. By correctly using or applying the
security patterns specified by Good’s architects, developers will reduce both the cost and risk associated
with producing secure products.

The template for describing design patterns is shown in Table 6.

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 20

Table 6: Design Pattern Elements
1

Design Element Description

Pattern Name and Classification A descriptive and unique name that helps in identifying and referring to the pattern.

Intent The problem solved by the design pattern and its general rationale and purpose.

Also Known As Other names for the pattern, if any are known.

Example A real-world example demonstrating the existence of the problem and the need for the
pattern. Throughout the description, refer to examples to illustrate solutions and
implementation aspects where necessary or useful.

Motivation A description of situations in which the pattern may apply and a more detailed description of
the problem that the pattern is intended to solve.

Applicability A general description of the characteristics a program must have for the pattern to be useful
in the design or implementation of the program.

Structure A textual or graphical description of the relationship between the various participants in the
pattern. This provides a detailed specification of the structural aspects of the pattern using
appropriate notations.

Participants The entities involved in the pattern.

Collaboration A description of how classes and objects used in the pattern interact with each other.

Consequences The benefits the pattern provides and any potential liabilities.

Implementation Guidelines for implementing the pattern. These are only a suggestion, not an immutable rule.
You should adapt the implementation to meet your needs by adding different, extra, or more
detailed steps or by reordering the steps. Whenever applicable, give UML fragments to
illustrate a possible implementation, often describing details of the example problem.

Sample Code Code providing an example of how to implement the pattern.

Example Resolved An example of how the real-world example problem described in the Example section may be
resolved through the use of this secure design pattern.

Known Uses Examples of the use of the pattern taken from existing systems/implementations.

Of particular importance are the Structure, Participants, and Collaboration sections. These sections
describe a design motif, i.e., a prototypical micro-architecture that developers can copy and adapt to their
particular designs to solve the recurrent problem described by the design pattern. A micro-architecture is
a set of program constituents (e.g., classes, methods, etc.) and their relationships. Developers use the
design pattern to introduce this prototypical micro-architecture within their current implementation. By
doing so, the solution will have structure and organization similar to the chosen design motif governing
the product as a whole; certainly from a security perspective.

5.5 Modify User Story with Security Requirements and Design

Completing a secure design that incorporates each of the security requirements derived from the threat
model means creating a new security story in Rally and then pairing it with the original user story that
prompted security handling.

{Need steps and Rally screenshots for splitting original story into a security and a user story, or a user
story with a secure design and requirements attached}

5.6 Secure Design Review (SDR)

As previously touched on in Section 4.4, when finished, the new security designs must be reviewed for
accuracy and completeness. This occurs in the SDR, a collaborative examination of the multilayer
security surrounding the application/system technical design and procedures. The SDR is conducted by

1
 C. Dougherty, et al, Secure Design Patterns, Software Engineering Institute – Carnegie Mellon University (2009)

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 21

the core architecture team as soon as possible after the threat modeling exercise is completed and high-
level designs become available. Ideally, SDR should occur 9 to 6 weeks before the sprint commit.

As part of the review, the team must ensure that the design withstands the attacks described in the threat
model. Table 7 lists the minimum vetting criteria of the SDR.

Table 7: Secure Design Vetting Criteria

System Security Requirement Secure Design Criteria

Solution/feature performs different
functions requiring different
privileges.

 Does the design provide for components with different privileges?

 Does the design have a special unprivileged component in charge of handling pre-
authentication tasks?

 Does the design take advantage of OS-level functions for high-priority tasks instead
of adding custom user-space functions?

 Does each component distrust inputs from other components, users, and external
systems? If so, does the design explicitly define centralized sanitation operations?

 Does the design employ any sandboxing techniques (e.g., creating simulated
conditions in a protected, closed environment for studying and analyzing potentially
malicious code/inputs)?

Solution/feature damage control
measures are in place in the event of
failure or compromise

 Does the design include components for detecting failed/compromised events? If
so, how accurate is the detection and what are the limitations?

 If compromised, how does the design limit potential damage?

 In the event of compromise, does the design’s reduced attack surface provide the
minimum security properties defined in the design’s residual DREAD?

Solution/feature maintains activity
logs and supports security alerts

 Is the design able to register security breaches and issue alerts?

 Is the design able to protect its log files against unauthorized modification?

 Does the design have a centralized secure logger? If so, does it use the secure
logger pattern?

Solution/feature processes data
originated from untrusted sources
(e.g., user inputs)

 Does the design show where and how data validation and sanitation is performed?

 Are there centralized input validation/sanitation mechanisms?

 Does the design avoid undesired side-effects caused by conflicting or out-of-order
validation/sanitation measures?

 Is the design able to correctly handle different valid encodings?

Protection of data in transit Does the design detect and reject replay, fragmentation, and similar attacks that
could regularly occur?

 How does the design ensure the confidentiality, integrity, and authenticity of data in
transit?

 Is the design able to thwart MITM attacks within reception range of an unencrypted
Wi-Fi access point?

 If a proprietary protocol is used, does the design adequately explain the
initialization and operational conditions necessary to ensure its secure state; for
example, origin and amount of entropy, min/max number of messages/bytes/time to
ensure PFS and reuse of the same counters/IV, etc., with the same encryption
material?

Protection of data at rest Does the design ensure that no sensitive data, including cryptographic material and
user data, is available in the file system?

 Does the design allow external components to retrieve protected information
without breaking the protection of other information?

 Does the design in any way inhibit the proper disposal of sensitive information,
including encrypted material? Is there a “clear sensitive information” pattern applied
to erase sensitive information from reusable sources like memory, memory/disk
caches, etc.?

Solution/feature exposes security
choices and settings to the user

Does the design allow users to choose the level of protection and security and even
turn off security measures, when applicable? Are the consequences adequately
communicated?

Solution/feature includes user
authentication

 Does the design provide an authentication mechanism that cannot be bypassed?

 Are identification and authentication performed in the same atomic operation?

 Does the design include an anti-hijacking, impersonation countermeasure? Can it
withstand the threat scenarios and attack vectors described in the threat model?

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 22

System Security Requirement Secure Design Criteria

Solution/feature requires file system
access

 Does the design block direct file manipulation and possible race conditions/hazards
by using secure directories?

 Does the design perform directory path normalization to remove references to
directory Meta entries (current and parent directory)?

It is important here to underscore that the SDR is a collaborative, constructive team effort in which
challenges to the design are encouraged to confirm its resilience and resistance to attacks. When minor
flaws (warnings) are discovered, the architect includes these fixes in the current design. On the other
hand, more severe flaws and vulnerabilities may require a much more extensively (sometimes entirely)
reworked design. Rework and review are repeated until the threat reduction objectives itemized in the
threat model and by the XA team are satisfied.

Perhaps most importantly, approval is not gained until a Good Secure Design Approval Form is
completed and signed by each SDR review member.

{It would be nice to include an example of the approval form here}

5.7 Secure Coding and Security Testing Practices

Easily avoided software defects are a primary cause of commonly exploited software vulnerabilities. Good
has observed through its analysis of vulnerability reports that most vulnerabilities stem from a relatively
small number of common programming errors.

5.7.1 Multiple Independent Levels of Security (MILS)

MILS simplifies specification, design, and analysis of security mechanisms. It is based on the concept of
separation, which tries to provide an environment that is indistinguishable from a physically distributed
system. A hierarchy of security services is obtained through separation. In this hierarchy, each level uses
the security services of a lower level to provide a new security functionality that can be used by the higher
levels. Each level is responsible for its own security domain and nothing else.

Good’s architecture divides system functions into three levels: the application layer, the middleware
service layer, and the separation kernel (SK). Sometimes called the partitioner layer, the SK is the base
layer of the system, responsible for enforcing data separation and information flow control; providing both
time and space partitioning via:

 Data Separation – the memory address space, or objects, of a partition are completely
independent of other partitions

 Information Flow – pure data separation is not practical so there is a need for the partitions to
communicate with each other. The SK defines the moderated mechanisms for inter-partition
communication.

 Sanitization – the SK is responsible for cleaning any shared resources (registers, system
buffers, etc.) before allowing a process in a new partition to use them.

 Damage Limitation – address spaces of partitions are separated, so faults or security breaches
in one partition are limited by the data separation mechanism.

5.7.2 Defensive Programming

By identifying insecure coding practices and developing secure alternatives, Good’s developers must
proactively take practical steps to reduce or eliminate vulnerabilities before deployment. Thus, coding
standards are enforced to ensure that developers:

 Clarify rather than obfuscate

 Promote intention-revealing code

 Produce easily readable code

 Ensure code quality and security

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 23

 Incorporate coding best practices

The result is Scrum Teams that have a shared understanding of quality code and the practices necessary
to produce it, which include:

 Intentional programming (IP), i.e., WYSIWYG, keeping interpretation to a minimum.

 Practicing the “once and only once” rule; i.e., redundancy is present and must be rectified if a
code change in one place requires a corresponding change in another.

 “Encapsulating by policy, revealing by need,” wherein encapsulation simply means making the
fields in a class private (hiding them) while still providing access to the fields via public methods.
The main benefit here is the ability to modify already implemented code without breaking the
code of others who use it.

 Attending to the quality of the code; this is measured by how well it manifests encapsulation,
strong cohesion, proper coupling, no redundancy, readability, and testability.

In sum, Good’s coding standards and practices have been established to keep the code consistent and
easy for the entire team to read and refactor. Code that looks the same encourages collective ownership.

Defensive coding is the practice of anticipating where failures can occur in order to create an
infrastructure that tests for errors, delivers notification when anticipated failures occur, and performs the
damage-control actions that have been specified, like halting program execution, redirecting users to a
backup server, enabling debugging information used to diagnose the issue, and so forth. Such defensive
coding infrastructures are built by adding assertions to the code and validating all user inputs.

5.7.3 Security Testing

In concert with Good’s security principles addressed in Section 6, security testing covers six basic
concepts:

 Confidentiality

 Integrity

 Authentication

 Availability

 Authorization

 Non-repudiation

Good’s security taxonomy defines these concepts to deliver robust security testing by the following
means:

5.7.3.1 Discovery

This approach identifies systems within scope and the services in use. It is not intended to discover
vulnerabilities, although version detection may highlight deprecated versions of software/firmware and
thus indicate potential vulnerabilities.

5.7.3.2 Vulnerability Scan

Following the discovery stage, this scan looks for known security issues by using automated tools to
match conditions with known vulnerabilities. The reported risk level is set automatically by the tool with no
manual verification or interpretation by the tester or tool vendor. This is supplemented with credential-
based scanning that seeks to remove any common false positives by using supplied credentials to
authenticate with a service (such as local Windows accounts).

5.7.3.3 Vulnerability Assessment

This approach uses discovery and vulnerability scanning to identify security vulnerabilities and places the
findings into the context of the environment under test.

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 24

5.7.3.4 Security Assessment

Security assessment builds upon vulnerability assessment by adding manual verification to confirm
exposure, but does not include the exploitation of vulnerabilities to gain further access. Verification could
be in the form of authorized access to the system to confirm system settings and involve examining logs,
system responses, error messages, codes, etc. The security assessment seeks to gain broad coverage of
the product but not the depth of exposure to which a specific vulnerability could lead.

5.7.3.5 Penetration Test

This test simulates an attack by a malicious party. Building on the previous stages, it involves exploitation
of found vulnerabilities to gain further access. Using this approach results in an understanding of the
ability of an attacker to gain access to confidential information, affect data integrity or availability of a
service and the respective impact. Each test is approached using a consistent and complete methodology
that allows the tester to use their problem solving abilities, the output from a range of tools, and their own
knowledge of networking and systems to find vulnerabilities that would/could not be identified by
automated tools. This approach looks at the depth of attack as opposed to the security assessment
approach, which looks at the broader coverage.

5.7.3.6 Security Audit

Driven by an audit/risk function to look at a specific control or compliance issue and characterized by a
narrow scope, this type of engagement makes use of any/all of the earlier approaches, i.e., vulnerability
assessment, security assessment, and penetration test.

5.7.3.7 Security Review

This review verifies that industry and special internal security standards have been applied to the product
software. It is typically completed using gap analysis while referencing code reviews, design documents,
and architectural diagrams. As a rule, this activity does not piggyback on any of the earlier approaches,
i.e., vulnerability assessment, security assessment, penetration test, or security audit. This is necessary
for its findings to be appropriately objective.

5.8 Proper Release Documentation and Secure Packaging

{Need to create this, but have no real information on it, yet. Maybe Henry can dig up something or point
me to a knowledgeable SME for this area}

5.9 Incident Management

Whereas continuous monitoring activities are about tracking and monitoring attempts that could
potentially breach the security of systems and software, incident management activities are about the
proper protocols to follow and the steps to take when a security breach (or incident) occurs.

Starting with the detection of the incident—accomplished by monitoring, using incident detection and
prevention systems (IDPS), and other mechanisms—the first step in incident response is to determine if
the reported or suspected incident is truly a legitimate security issue. Upon determination of valid
incidents and their type, steps to minimize the loss and destruction and to correct, mitigate, remove, and
remediate exploited weaknesses must be undertaken so that computing services can be restored as
expected. Clear procedures to assess the current and potential business impact and risk must be
established along with the implementation of effective and efficient mechanisms to collect, analyze, and
report incident data. Communication protocols and relationships to report on incidents both to internal
teams and to external groups must be established and followed.

The main types of security incidents include:

 Denial of Service (DoS) – the most common type of security incident, DoS is an attack that, by
exhausting resources, prevents or impairs an authorized user from using the network, system, or
software application.

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 25

 Malicious Code – has to do with code-based malicious entities like viruses, worms, and Trojan
horses that can successfully infect a host.

 Unauthorized Access – refers to incidents wherein a person gains logical or physical access to
the network, system, or software application, data, or any other IT resource without having been
granted the explicit rights to do so.

 Inappropriate Usage – incidents in which a person violates the acceptable use of system
resources or company policies.

 Multiple Components – incidents that encompass two or more incidents. For example, a SQL
injection exploit at the application layer allowed the attacker to gain access and replace system
files with malicious code files by exploiting weaknesses in the web application that allowed
invoking extended stored procedures in the insecurely deployed backend database.

Appropriate containment, eradication, recovery and post-incident analysis procedures logically follow.

5.9.1 Containment

Upon detection and validation of a security incident occurrence, the incident must be contained to limit
further contamination, damage, or additional risks. Containment includes the most appropriate and
expedient combination of shutting down the system, disconnecting the affected system from the network,
disabling ports and protocols, turning off services, and/or taking the application offline. Moreover,
containment strategies must be based on the type of incident, each of which may require a distinct
strategy to limit its impact.

While delayed containment can be useful in collecting more evidence by monitoring the attacker’s activity,
this can be dangerous, since the attacker could also be presented with an opportunity to elevate privilege
and compromise additional assets. Even though Good’s highly experienced field incident response
support team (FIRST) is capable of monitoring all attackers’ activity and terminating attacker access
instantaneously, the risks posed by delayed containment make it an inadvisable strategy, and in all cases
any strategic delay must be at the discretion of the legal department according to the following criteria:

 Potential impact caused by theft of resources

 Need to preserve evidence

 Availability of affected software and services

 Time and resources needed to execute the strategy

 Possibility of infection triggering destructive malware.

Moreover, it must always be remembered that incident data and information is in no way “water cooler”
conversation and must be restricted to authorized personnel with a direct need to know.

5.9.2 Eradication

Eradication can be performed as a standalone step or procedure, or during recovery, and only after
appropriate authorization has been granted. When dealing with licensed and third-party components or
code, it is important to make sure which party has the contractual rights and obligations to make and
redistribute security modifications.

5.9.3 Recovery

Recovery mechanisms aim to restore the resource—network, system, or software application—to its
normal working state, which is usually OS-/application-specific. The recovery procedure must also include
implementing a heightened degree of awareness through monitoring and logging to detect repeat
offenders.

To limit the disclosure of incident-related sensitive information to outside parties, which could potentially
cause more damage than the incident itself, the appropriate communications protocol must be followed
(see Good Policy No. _______). Absolutely no communication to outside parties must be made before

 SDL Practices and Procedures Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 26

FIRST has discussed the issue with need-to-know engineering and product management personnel, the
legal department, and the affected customer’s security office.

5.9.4 Post-Incident Analysis

Not all incidents will require a full-fledged post-incident analysis, but at a base minimum the following
must be determined and reported to appropriate Good company officials:

 What happened?

 When did it happen?

 Where did it happen?

 Who was involved?

 Why did it happen?

Finally, securely maintaining an incident database with detailed information about the incident that
occurred and how it was handled is paramount.

5.10 End-of-Life (EOL) Security Policy

All software is vulnerable until it is properly sunsetted. Thus, the first requirement regarding secure
disposal of software is an established EOL policy. NIST Special Publication 800-30 prescribes the risk
management activities necessary to (a) appropriately retire software, (b) ensure that residual data are
properly handled, and (c) conduct system migration in a systematic and secure manner.

5.10.1 Sunsetting Criteria

Sunsetting criteria provide guidance on when a particular product (software and/or supported hardware)
must be disposed of and/or replaced. This includes the following issues:

 Discovery of threats and attacks against software that can no longer be mitigated to the
acceptable levels of security due to technical, operational, or management constraints.

 Software contractual agreements that have come to an end and/or the cost of maintaining and
using the software has become prohibitive.

 The software is no longer compatible with the architecture of market-driven and available
hardware platforms/devices and technologies that Good is committed to support.

 Newer software designs provide the same functionality in a more secure fashion.

5.10.2 Information Disposal and Media Sanitization

The importance of information disclosure protection cannot be overstressed. In addition to the software
itself, the media on which the information is stored must be sanitized or destroyed as appropriate.

Sanitization is the process of removing information from media such that data recovery and disclosure is
not possible, to include the removal of classified labels, marking(s), and activity logs related to the
information. Information confidentiality assurance must always be the primary consideration. Clearing,
purging or destroying are the common means of media sanitization.

Disposal is the act of discarding media without giving any consideration to sanitization. This is often
accomplished by recycling hardcopy media wherein no confidential information is present. While
technically not a type of sanitization, disposal is still a valid approach to handling media containing non-
confidential information.

At all events, software that is no longer required is not secure until it and its data and related components
have been completely removed from the computing environment.

* * * * *

 Software Security Principles Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 27

The general yet fundamental security requirements and rules undergirding the SDL processes described
above bear additional discussion next and should be reviewed periodically by all members of the
technical staff involved in software development and support.

6 Software Security Principles2
Principles are important because they help us make security decisions in new situations with consistency
and prudence. Applying these principles, we assess security requirements, make architecture and
implementation decisions, and identify possible weaknesses in our systems and those with which our
systems interface.

The key thing to remember is that in order to be useful, principles must be evaluated, interpreted and
correctly applied to address a specific problem. Although principles can serve as general guidelines,
simply telling a software developer that their software must “fail securely” or that they should do “defense
in depth” won’t mean that much until placed in a practical, real-world context.

To that end, Good’s security requirements and assurance practices are governed by the following
principles.

6.1 Reduce the Attack Surface

The attack surface of a software environment is the code that can be run by unauthorized users. It
includes, but is by no means limited to, user input fields, protocols, interfaces, and services. Turning off
unnecessary functionality reduces the attack surface. Minimizing the number of entry points available to
untrusted users reduces the attack surface, as does eliminating obsolete functionality or services
requested by relatively few users.

The core tenet of Good’s attack surface reduction (ASR) principle is that no code has a zero likelihood of
containing one or more vulnerabilities, and vulnerabilities will inevitably result in customer compromise.
The only foolproof way to limit customer compromise is to run no code. Zero functionality = 100%
security. While true, it’s not very practical. Accordingly, ASR is a compromise between perfect safety and
unmitigated risk by minimizing the code exposed to untrusted users.

Hence, ASR has three main goals:

 Reduce the amount of code executing by default

 Reduce the volume of code that is accessible to untrusted users by default

 Limit the damage if the code is exploited.

Of course, there will be applications threat modeled for which the local environment is trusted. In this
case, having a large number of local input points, such as configuration files, registry keys, user input,
etc., is less worrisome than making several external network connections.

Collapsing functionality that was previously spread across several ports onto a single port does not
always help reduce the attack surface either, particularly when the single port exports all the same
functionality within an infrastructure performing basic switching. In fact, the effective attack surface is the
same unless the actual functionality is somehow simplified. Since underlying complexity clearly plays a
role, metrics based on attack surface should not be used as the only means of analyzing risks in a piece
of software.

6.2 Secure by Design Not Afterthought

This means “bolting on” security near the end of development is a no-no. Mitigation of security and
privacy issues must be performed during the opening stages of a release project. Additionally, it is
crucially important for product management and software developers to understand the distinction
between “secure features” and “security features.”

2
 Based on www.OWASP.org/index.php/CLASP_Security_Principles (2013)

http://www.owasp.org/index.php/CLASP_Security_Principles

 Software Security Principles Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 28

Perhaps little appreciated, it is quite possible to implement security features which are, in fact, insecure.
Secure features are defined as features whose functionality is well engineered with respect to security,
including rigorous validation of all data before processing and cryptographically robust implementation of
libraries for cryptographic services. The term security feature merely describes program functionality with
security implications, like Kerberos authentication or a firewall.

Therefore, to enter development in the Scrum phase of the SDLC, features and functionality with security
implications must pair a user story that adequately and accurately describes the intended use of the
feature or function with a security story/design the describes how to deploy the feature or function in a
secure fashion.

6.3 Insider Threats as the Weak Link

Company personnel must never overlook “insider” risks; i.e., users with inside access to a Good-
engineered product or application, whether it be in deployment or development. Forgoing paranoia, this
means that it is unwise to completely ignore the risks from the person in the next cube or on the next
floor, the risks from maintenance workers and janitors, and especially the risks from those who have
recently quit or been fired. Yearly numbers from the Computer Crime and Security Survey performed by
the Computer Security Institute and the FBI show that over half of all security incidents have an inside
angle.

Placing blind faith and trust in the people around you when it comes to security is not only naïve, it is
irresponsible. Not only might the people you think you know be secretly disgruntled or susceptible to a
bribe, they could accidentally give insider help by falling victim to a social engineering attack.

Social engineering is when an attacker uses his social skills, generally involving deception, to gain
unauthorized access to confidential systems and data. The best defense against social engineering
attacks is to precisely follow the company’s established security policies to the letter, no matter how
charming or persuasive an individual known to you—or unknown—may be.

6.4 Assume the Network is Compromised

A variety of attacks can be launched by anyone with access to any network media that can see
application traffic. It is wrong to assume that attacks in the middle of an ISP-to-ISP communication will
never happen. There is always an attack risk when someone on a shared segment can see the traffic.
Generally, the greatest risk lies in the local networks that the endpoints use. ARP spoofing, a technique
whereby an attacker sends fake address resolution protocol (ARP) messages onto a LAN, and attacks on
the physical media are actually quite easy to perform, thus obviating a pure man-in-the-middle (MITM)
attack scenario. The most well-known network-level threats include:

 Eavesdropping – always a potential MITM threat, even when using encryption, if proper
authentication is not performed.

 Tampering – changes to data on the wire. Encryption notwithstanding, it may be possible to
make significant changes to the data even without decrypting it. Tampering is best thwarted by
performing the ongoing message authentication (MARCing – stands for Message Authentication,
Reporting and Conformance) furnished by most high-level protocols like SSL/TLS.

 Spoofing – happens when traffic is forged so that it appears to come from a different source
address than it really does. This can thwart access control systems relying exclusively on IP
addresses and/or DNS names for authentication.

 Hijacking – is an extension of spoofing and can occur when established connections are
vulnerable to being taken over, allowing the attacker to enter an already established session
without having to authenticate. MARCing is the best defense here.

 Observing – wherein it is possible to give away security-critical information even when a network
connection is confidentiality-protected through encryption. For example, the mere fact that two
particular hosts are talking may give away significant information, as can timing the traffic. Covert
channels, i.e., non-obvious communication paths, tend to be the most difficult problem in the
security space.

 Software Security Principles Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 29

6.5 Secure by Default

A system’s default setting must never expose users to unnecessary risks and should be secure as
possible. This means enabling all security functionality by default, as well as disabling all optional features
that could entail a security risk. Likewise, not even a system failure should cause the software to behave
in an insecure manner. This is the “fail-safe” principle. In perhaps the simplest example, it prohibits failing
over to a plaintext connection attempt when an SSL connection cannot be established.

Unfortunately, the “secure-by-default” philosophy somewhat undermines usability since the user won’t
have immediate access to all available functionality. It is therefore incumbent on product documentation
to clearly enumerate the security risks of enabling optional functionality, with UI alerts or warning
messages underscoring the threat potential, forcing the user to explicitly agree to the desired action.

6.6 Defense in Depth

Redundant security mechanisms increase security. This is the principle of defense-in-depth. If one
mechanism fails, perhaps another will still provide the necessary security. For instance, never rely totally
on a firewall, especially for internal-use-only applications. A firewall alone rarely deters a determined
attacker.

Of course, implementing a defense-in-depth strategy can add complexity, and one could rightly argue that
increasing complexity increases risk. In all cases, the risk of complexity needs to be weighed against the
benefits of added protection.

6.7 Principles for Reducing Exposure

Compartmentalization is one of these principles. It says that when one compartment or component of the
system is attacked or becomes vulnerable, it can be sealed off from the other compartments. The
principle of least privilege is another. It states that privileges granted to a user should be limited to only
those necessary to do what the user needs to do and no more. Minimizing windows of vulnerability is
another important security principle to reduce exposure. It says that when a risk must be introduced (i.e.,
no alternative exists), it should remain for as short a time as possible

6.8 The Insecure Bootstrapping Principle

While it is always best to avoid insecure links wherever possible, the principle of insecure bootstrapping
says that if the system needs to use an insecure communication channel for some reason, it is used only
to bootstrap a secure communication channel and for no other purpose. For example, the SSH protocol
offers a secure channel after the client and server have authenticated each other. Since it doesn’t use a
public key infrastructure the first time the client connects, it generally will not have the server credentials.
The server sends its credentials and the client blindly accepts that they’re legitimate. Here, obviously, an
attacker who can send his own credentials can masquerade as the server or launch an MITM attack.
Fortunately, the SSH client remembers the initial credentials. If the credentials remain the same, and the
first connection was secure, then subsequent connections are also secure. If the credentials change, the
SSH client alerts the user to a potential attack underway.

6.9 Input Validation

Data input to a program is either valid or invalid. One inviolable security practice at Good is to definitively
identify invalid data before any action on the data is taken. Levels of input validation include:

 Use – all places in the code where data, particularly data of external origin, is used.

 Unit boundaries – whenever data is passed between individual components, modules, or
functions, whether pushed or pulled.

 Trust boundaries – whenever and wherever an executable is invoked.

 Protocol parsing – whenever the network protocol gets interpreted.

 Application entry points – either just before or just after passing data to an application, e.g., a
validation engine in a web server for a web service.

 High-Level Security Requirements Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 30

 Network – via a traditional intrusion detection and prevention system (IDPS) that can consist of a
network intrusion detection system (NIDS), a host-based intrusion detection system (HDS), a
stack-based intrusion detection system (SIDS), or system-specific detection using custom tools
and honeypots.

6.10 Security Ethics

First and foremost, Good’s security ethos dictates that users exposed to security risks will be clearly
informed of those risks and the recommended mitigation strategies, even though such risks may not be
obvious to the user, either initially or at some later date.

Ethics further prescribe that users will be provided with the specific privacy policy governing use of their
personal and/or confidential information in a timely manner so that they can act to avoid undesired use of
that information. Additionally, when the privacy policy changes, the user will be given the explicit choice of
accepting the change or having his/her personal data expunged.

If a system is compromised on which user data resides, users will be informed of the breach of privacy.
When the data resides in the state of California, this is required by law. Similar regulations may apply in
other jurisdictions.

* * * * *

Applying these governing principles, both general and specific security requirements are generated for
each product, system, and application developed by Good and its approved ISVs.

7 High-Level Security Requirements
Throughout the SDLC, security requirements explicitly define and address the security goals and
objectives of both the company and its customers. For each characteristic of the software security profile
defined by the security architecture team, general requirements have been established which are
continually being refined/expanded pertinent to new software features (functional and non-functional)
entering the development pipeline that merit updates to the existing threat model, including:

 Confidentiality

 Integrity

 Availability

 Authentication

 Authorization

 Auditing

 Session Management

 Errors and Exceptions Management

 Configuration Parameters Management

 Sequencing and Timing

 Archiving

 Internationalization

 Deployment Environment

 Procurement

 Antipiracy and Anti-tampering

7.1 Confidentiality Requirements

Confidentiality requirements are those that address protection against disclosure of information that is
either personal or considered sensitive in nature to unauthorized individuals. The classification of data
into sensitivity levels is used to determine confidentiality requirements. Data can be broadly classified into
public and private (nonpublic) information. The two most common confidentiality protection mechanisms

 High-Level Security Requirements Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 31

are (a) encryption and hashing, and (b) masking. Masking is the weaker form in which the original
information is either X’d out or asterisked (commonly with the bullet symbol) primarily to protect against
over-the-shoulder surfing attacks.

Independent of the mechanism(s) used, confidentiality requirements need to be defined throughout the
information life cycle from the origin of the data in question to its retirement. This means it is necessary to
explicitly state confidentiality requirements for nonpublic data in terms of:

 In transit – when data is transmitted over unprotected networks

 In processing – when the data is held in computer memory or media for processing

 In storage – when the data is at rest, within transactional as well as non-transactional systems,
including archives.

Confidentiality requirements may be time-bound, meaning some information may require protection only
for a certain period of time, until after it has been otherwise released into the public domain and is no
longer deemed sensitive.

7.2 Integrity Requirements

Integrity requirements address reliability assurance and protection/prevention against unauthorized
modifications. These security requirements refer not only to system/software modification protection
(system integrity), but also to any data that the system/software handles (data integrity). In addition to
reliability assurance, integrity requirements are meant to provide controls assuring that the accuracy of
the system and data is maintained.

Methods include input validation, parity bit checking, cyclic redundancy checking (CRC—commonly
referred to as checksum), and hashing. Integrity requirements generally dictate that:

 All input forms and query string inputs are validated against a set of allowable inputs before the
software accepts it for processing.

 Published software provides the recipient with a computed checksum and the hash function used
to compute the checksum so that the recipient can validate its accuracy and completeness.

 All nonhuman actors such as system and batch processes are identified, monitored, and
prevented from altering data as it passes over systems it runs on, unless explicitly authorized to
do so.

Taken fully into account as requirements at all times are the reliability, accuracy, completeness, and
consistency aspects of all associated systems and data for ensuring integrity in the product software built
or acquired.

7.3 Availability Requirements

Despite the concept of availability being traditionally relegated to business continuity and disaster
recovery rather than security, it should be recognized that improper software design and development
can lead to data destruction or inadvertently cause a DoS to authorized users. Consequently, availability
requirements must be explicitly determined to ensure that there is no disruption of service for the user or
the customer’s business operations.

When determining availability requirements, the maximum tolerable downtime (MTD) and corresponding
recovery time objective (RTO) must both be specified. MTD measures the minimum availability required
for business operations to continue without unplanned disruptions. But, because all software will fail at
some point, the RTO targets the maximum time interval that can pass before system execution is restored
to the expected state of operations for authorized users. As a rule, both MTD and RTO should be
explicitly stated in all Good service level agreements (SLAs). To arrive at these metrics, a business
impact analysis (BIA) must be conducted in the absence of stress and performance testing on software
entering development.

The BIA can either measure the loss of revenue for each minute the software is down, the cost to fix and
restore the software to normal operations, or fines that are levied on the business upon any software

 High-Level Security Requirements Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 32

security breach. It can also be measured qualitatively, based on loss of credibility, confidence, and loss of
brand reputation. BIA can be conducted on both new and existing versions of the software. Where the
software (feature or functionality) already exists, the stress and performance test results from the previous
version can be used to determine the new high-availability requirements.

At Good, downtime is measured in “nines” as shown in the following table:

Table 8: High-Availability Measures of Nines

Measurement Availability (%)
Downtime
per year

Downtime per
month (30 days)

Downtime per
week

Three nines 99.9 8.74 hours 43.2 min 10.1 min

Four nines 99.99 52.4 min 4.32 min 1.01 min

Five nines 99.999 5.24 min 25.92 sec 6.05 sec

Six nines 99.9999 34.45 sec 2.59 sec 0.605 sec

Understanding the impact of failure due to a breach of security is vitally important in determining
availability requirements. End-to-end configuration requirements included in threat modeling must ensure
that there is no single point of failure. A single point of failure is characterized by having no redundancy
capabilities. In addition to end-to-end configuration requirements, load balancing requirements must be
identified and captured as well. Replication is achieved with a master-slave scheme in which updates are
propagated to the slaves actively or passively, with continuing consideration given to the integrity
requirements of the data replicated.

Thus, Good’s availability requirements specify that:

 All software ensures high availability of at least five nines (99.999), as defined in the SLA.

 The number of users at any given point in time able to use the software can be up to n,nnn,nnn.

 Software and data can be replicated across data centers to provide load balancing and
redundancy.

 Mission critical functionality in the software can be restored to normal operations within 1 hour of
disruption; mission essential functionality within 4 hours; and mission support functionality
restored to normal operations within 24 hours of disruption.

Mission critical functionality is that for which loss, disruption or failure results in the failure of business
operations. Mission essential functionality is functionality whose failure or disruption will cause the failure
of the system (product or device). Mission support functionality is characterized as non-essential
functionality that ranges from (a) optional feature APIs to (b) functionality supporting third-party plugins to
(c) OTA provisioning of new devices to (d) a service interruption of Good’s online Knowledgebase.

7.4 Authentication Requirements

Authentication is the process of validating an entity’s identity claim by validating and verifying a submitted
credential against a trusted source holding those credentials. Authentication requirements are those that
verify and assure the legitimacy and validity of the entity presenting an identity claim for verification.

Of course, it is important to determine any need for two- or multifunction authentication. In all cases, it is
wise to leverage existing/proven authentication mechanisms. Any requirement calling for a custom
authentication process must be carefully scrutinized to ensure that no new risks would be introduced.

The most common forms of authentication are:

 Anonymous – no authentication check for validating the entity; prohibited in Good products.

 Basic – HTTP 1.0 Base-64 encoded user credentials; avoided at Good because the encoded
credentials can be easily decoded.

 High-Level Security Requirements Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 33

 Digest (hash value) – is a challenge-response mechanism that sends a hash value (message
digest) of the original credential; wherein the hash value of what was previously established is
compared to what is currently supplied using a unique hardware property—one that cannot be
easily spoofed—as a salt to calculate the digest.

 Integrated – or NTLM (for NT LAN Manager; also known as NT challenge-response
authentication), also sends the credentials as a hash value and can be implemented as a
standalone mechanism or in conjunction with Kerberos v5 when delegation and impersonation is
necessary in a trusted subsystem infrastructure.

 Client Certificate – digital certificates (IT x.509v3) with the certification authority’s SHA1 and
MD5 fingerprints vouching for the validity of the holder, encrypting the data transmitted, typically
via SSL.

 Forms – require the user to supply username and password which are validated against the
active directory, a database, or a configuration file. Here, transmitted data is encrypted in addition
to a transport layer security (TLS) implementation like SSL or a network security layer like IPsec.

 Tokens – usually used in conjunction with forms authentication, where, upon verification, a token
is issued to the user granting access to the requested resources. This way, the username and
password need not be passed on each call, which is particularly useful in single sign-on (SSO)
situations.

 Smart Cards and Fobs – the first is ownership-based authentication with cards containing a
programmable embedded microchip used to store the user’s credentials. In the same vein, one-
time (dynamic) passwords (OTP) provide the maximum strength authentication because OTP
tokens (key fobs) require two factors: knowledge and ownership, i.e., something you know and
something you have. Like token-based authentication, users enter the credential information they
know and are issued a PIN that is displayed on the token device, like an RFID they own. Because
the PIN is not static and changes dynamically every few seconds, it makes it virtually impossible
for a malicious attacker to steal authentication credentials.

 Biometric – very advanced, though becoming more and more commonplace, this form of
authentication uses biological characteristics—something you are—as identity credentials, i.e.,
physical attributes like retinal patterns, facial features, voiceprint, handprints and fingerprints to
verify the submitter’s identity. Currently cost and hardware prohibitive in mobility applications,
these mechanisms are typically deployed to restrict access in highly secure facilities and
computer systems with national security implications.

Capturing the proper authentication requirements early on in the SDLC helps to mitigate serious security
risks at a later stage, especially during software design and development.

7.5 Authorization Requirements

Layered upon authentication, authorization requirements confirm that an authenticated entity has the
needed rights and privileges to access and perform actions on a requested resource.

Access control models are of five types:

 Discretionary Access Control (DAC) – restricts access to objects based on the identity of the
subject using access control lists.

 Nondiscretionary Access Control (NDAC) – characterized by the system objectively enforcing
security policies with tamper-proof mechanisms applied to all subjects.

 Mandatory Access Control (MAC) – access to objects is restricted to subjects based on the
sensitivity of the information contained in the objects. It matches a subject’s clearance level with
the object’s sensitivity level.

 Role-based Access Control (RBAC) – RBAC uses the subject’s role to determine whether
access should be allowed or not

 Resource-based Access Control (RscBAC) – can be broadly divided into:

 High-Level Security Requirements Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 34

- Impersonation and Delegation Model – propagating the identity of the primary entity to
downstream systems. Kerberos uses this model to grant tickets that are delegated sets of
permissions to invoke services downstream, acting as if it is the primary entity by
impersonating the user identity.

- Trusted Subsystem Model – predominantly used in web applications, access request
decisions are granted based on the identity of the resource that is trusted instead of user
identities. In other words, it is not the user identity that is checked but the web application
identity that is trusted and can invoke the call to the database.

Examples of authorization requirements that must be captured where appropriate include:

 Restricting access to highly sensitive secret files to users with secret or top secret clearance only.

 Not requiring users to send their credentials again after they have successfully authenticated
themselves.

 Requiring that all unauthenticated users inherit read-only permissions that are part of the guest
user role, while authenticated users default to having read and write permissions as part of the
general user role. Only members of the administrator’s role will have all rights as a general user
in addition to having permissions to execute operations.

7.6 Auditing/Logging Requirements

Auditing requirements are those that assist in building the historical record of user actions. Such an audit
trail helps detect when an unauthorized user makes a change or an authorized user makes an
unauthorized change, both of which are integrity violations. At a minimum, auditing requirements include:

 Who: Identity of the subject (user process) performing an action

 What: Action

 Where: Object on which the action was performed

 When: Timestamp of the action.

What is logged and what is not is a decision of the product owner based on customer feedback, but, as a
best practice for security, all critical business transactions and admin functions need to be identified and
audited. Additional logging requirement examples include:

 Logging all failed logon attempts, along with the timestamp and IP address from which the
request originated.

 Always appending audit logs, never overwriting.

 Securely retaining audit logs for a period of three (3) years.

7.7 Session Management Requirements

Sessions are useful for maintaining state but also have an impact on the secure design principals of
complete mediation and psychological acceptability. Upon successful authentication, a session ID is
issued to the user to track that user’s behavior and maintain an authenticated state until the session is
abandoned or the state changes to “not authenticated.” In stateless protocols like HTTP, session state
must be explicitly maintained and protected from brute force, predictable session ID attacks, and MITM
hijacking. In short, session management security requirements ensure that, once established, the session
remains in a state that will not compromise the software.

Session management specifications should always include provision for:

 Uniquely tracking each user action.

 Once authenticated, not requiring the user to provide credentials again during the session.

 Explicitly abandoning the session when the user logs off, closes the application, or turns off the
device.

 Never passing session IDs in clear text or any easily guessable format.

 High-Level Security Requirements Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 35

7.8 Errors and Exception Management Requirements

Because errors and exceptions are potential sources of information disclosure, verbose error messages
and unhandled exception reports can result in divulging sensitive internal application architecture, design,
and configuration information. Recommended error and exception security requirements include:

 Explicitly handling exceptions using try, catch, and block.

 Displaying error messages to the end user that reveal only necessary information; no internal
system error details are disclosed to the user for any reason.

 Monitoring and periodically auditing security exception details.

7.9 Configuration Parameters Management Requirements

Config parameters and code must be protected from hackers. Because these parameters and code
initialize before the software can run, identifying and capturing the form and value range of the settings is
vital to assure that the appropriate level of protection is considered during software design and
development. The minimum requirements include:

 Encrypting sensitive DB connect settings and other sensitive application settings in web
application Config resources.

 Never hard-coding passwords in line code.

 Carefully and explicitly monitoring initialization and disposal of global variables.

 Including protection of configuration information in application and/or OnStart and OnEnd events
as a safeguard against disclosure threats.

7.10 Sequencing and Timing Requirements

Sequencing and timing flaws can cause race conditions or time-of-check/time-of-use (TOC/TOU) attacks.
Common sources of race conditions are:

 Unintended sequence of events

 Multiple unsynchronized threads executing simultaneously

 Infinite loops preventing a program from returning control to the normal process flow.

In general, race conditions occur when two threads execute concurrently, both accessing the same object
at the same time, with one thread altering the state of the shared object. Single flow of control—often
called atomic operations—will obviate concurrency, sacrificing a degree of performance for integrity and
security. Race conditions can also be eliminated by resource locking, wherein the object being accessed
does not allow any alteration until the first thread or process releases it. This is called Mutex, for mutual
exclusion.

7.11 Archiving Requirements

It is important to establish that organizational retention policy, especially regarding sensitive or private
information, does not contradict regulatory requirements, which may vary from country to country. Where
conflicts arise, the regulatory requirements take precedence, and all SDLC process-related data and
information must be stored and archived until such time as required by regulatory and company policy.

Hence, is it absolutely essential that archiving requirements are part of the required documentation and
not overlooked when designing and developing software.

7.12 Internationalization Requirements

Character encoding and display direction are the two most important internationalization factors. The
character encoding standard adopted not only defines the identity and code point of each character but
also how the value is represented in bits. Unicode is the only universal character encoding standard that
is fully compatible with ISO/IEC 10646 and includes UTF-8, UTF-16, and UTF-32. The appropriate and
correct character encoding must be set in the software to prevent Unicode security issues like spoofing,

 High-Level Security Requirements Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 36

overflows, and canonicalization, which is the process of converting data that has more than one possible
representation into a standard canonical form.

In addition to character encoding, it is equally important to determine display direction requirements,
which should be explicitly identified and included in all UI/UX stories.

7.13 Deployment Environment Requirements

Since production environments are often if not usually configured differently than development and test
environments, restrictions including ports and protocols, network segmentation, disabled services, and
components must be considered. Special or customer-centric infrastructure, platform, and host security
restrictions must be elicited, ideally early on. Implementation of clustering and load balancing
mechanisms can likewise have an impact on software design, so these architectures need to be identified
and accommodated, either as one-offs or using configuration switch options. Identifying and capturing
constraints, restrictions, and requirements of the environment(s) in which the software is expected to
operate, in advance, will considerably reduce deployment challenges later, helping to assure that the
product will be deployed and function as designed.

7.14 Third-Party Software Procurement Requirements

Establishing software security requirements is even more essential when procuring software instead of
building it in-house. Sometimes the requirement definition process itself leads to a buy decision. Thus, as
a matter of legal policy, security requirements as protection mechanisms must be included in all third-
party software purchase contracts and SLAs in addition to software escrow.

Software escrow is the act of having a copy of the source code for the implemented third-party or ISV
software held in the custody of a neutral escrow agency/party. This insures that, as the licensee, Good is
protected against loss of use of mission-critical software if the third-party software publisher fails for any
reason, including going out of business. It also protects the third-party software publisher against illegal,
reverse-engineered copies of its code. In all cases, determination of a breach is established by comparing
the software in question to the copies and versions held in escrow; usually both source and object code
along with appropriate documentation for each version.

7.15 Antipiracy and Anti-tampering Requirements

All code needs to be protected from unauthorized modification. Identifying and specifying applicable code
shrouding, code signing, anti-tampering, licensing, and IP protection mechanisms must also be included
during requirements gathering, since they can be considerably more difficult and costly down the road.

Although currently discouraged in Good products, source code anti-tampering can be achieved using
obfuscation, or shrouding, a process of making the code obscure and confusing using a special program
called the obfuscator so that, even if the source code is leaked to or stolen by an attacker, it is not easily
readable and decipherable. Shrouding merely entails complicating the code with generic variable names
and renaming text and symbols within the code to meaningless character sequences. Shrouding need not
be limited to source code, either. When object code is shrouded, it helps deter reverse engineering.

Reversing is analogous to going backward in the SDLC. While it can be used for legitimate purposes,
especially in cases where the documentation has been lost or is otherwise unavailable, skillful attackers
can use reverse engineering to crack the software and circumvent security protections. They can also
tamper and repackage the software with malicious intent.

In addition to code shrouding and depending on the application, removing symbolic information from the
program executable (PE) and embedding anti-debugger code are both worthy countermeasures. This
entails the removal of class names, class member names, names of global instantiated objects, and other
textual information from the PE by stripping them out before compilation. A user- or kernel-level debugger
detector can then be embedded in the code to terminate the process when a debugger is found.
IsDebuggerPresent and SystemKernelDebuggerInformation APIs are examples.

 Common Software Vulnerabilities and Controls Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 37

Code signing is the process of digitally signing the code (executables, scripts, etc.) with the digital
signature of the code author, using private and public key systems. Each time code is built, it can be
signed immediately or just before deployment. Any alteration of the code will result in a hash value no
longer matching the hash value that was published.

In summary, Good’s security requirements frame-out the general design and deployment decisions made
before any new feature of product component enters development. Specific implementation details are
arrived at during the define-build-test (Scrum) phase of the SLDC.

8 Common Software Vulnerabilities and Controls
Secure software results from the confluence of people, process, and technology. Software industry
analysis of security breaches invariably identifies one of the following to be the root cause of the breach:

 Design flaws

 Coding/implementation issues

 Improper configuration and operation.

These are more specifically itemized in the Open Web Application Security Project (OWASP) Top 10 List,
Mitre/SANS Institute Common Weakness Enumeration (CWE) Top 25 List of the most dangerous
software programming errors, and, specifically regarding Good’s product line, the OWASP Top 10 Mobile
Risks, as well as to a lesser extent the OWASP Top 10 Cloud Computing Risks. Each is covered in turn
as follows.

8.1 OWASP Top 10

In addition to considering the most common application security issues from a weakness/vulnerability
perspective, the OWASP Top 10 List views application security issues from a technical risk and business
impact perspective, comprising:

1. Injection flaws – such as SQL, OS, and LDAP injection, occurring when untrusted data is sent to
an interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter
into executing unintended commands and accessing unauthorized data.

2. Cross-site scripting (XSS) – occurring whenever an application takes untrusted data and sends
it to a web browser without proper validation and escaping. XSS allows attackers to execute
script in the victim’s browser that can hijack user sessions, deface web sites, or redirect the user
to malicious sites.

3. Broken authentication and session management – occurring when authentication and session
management are incorrectly implemented. This allows attackers to compromise passwords, keys,
and session tokens; and to exploit implementation flaws to assume other user’s identities.

4. Insecure direct object reference – occurring when a developer exposes a reference to an
internal implementation object, such as a file, directory, or database key. Without an access
control check or other protection, attackers can manipulate these references to access
unauthorized data.

5. Cross-site request forgery (CSRF) – forces a logged-on victim’s browser to send a forged
HTTP request, including the victim’s session cookie and any other authentication information, to a
vulnerable web application, allowing the attacker to force the victim’s browser to generate
requests that the vulnerable application thinks are legitimately coming from the victim.

6. Security misconfiguration – occurring when the secure configuration defined for the application,
framework, web server, and platform is poorly defined, implemented, and/or maintained;
applications should always be shipped with secure defaults.

7. Failed to restrict URL access – occurring because checking URL access rights before
rendering protected links and buttons is only partially effective. Applications need to perform
similar access control checks when the pages are actually accessed or attackers will be able to
forge URLs to access these hidden pages anyway.

 Common Software Vulnerabilities and Controls Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 38

8. Unvalidated redirects and forwards – occurring when applications redirect and forward users to
other pages and sites and use untrusted data to determine the destination pages. Without proper
validation, attackers can redirect victims to phishing or malware sites or use forwards to access
unauthorized pages.

9. Insecure cryptographic storage – occurring when applications do not properly protect sensitive
data like credit card numbers, SSNs, and authentication credentials with appropriate encryption
or hashing. Attackers can use this weakly protected data to conduct identity theft, credit card
fraud, and other crimes.

10. Insufficient transport layer protection – occurring when transport layer protection is limited to
certain operations, like authentication, but end-to-end transport layer protection is absent, or
when the application fails to encrypt network traffic to protect sensitive communications.

8.2 CWE Top 25

The Common Weakness Enumeration (CWE) Top 25 List of the most dangerous software programming
errors is grouped into three major categories as follows:

 Insecure interaction between components: including weaknesses that relate to insecure ways
in which data are sent and retrieved between separate components, modules, programs,
processes, threads, or systems.

 Risky resource management: including weaknesses that relate to ways in which software does
not properly manage the creation, usage, transfer, or destruction of important system resources.

 Porous defenses: including weaknesses that relate to defensive techniques which are too often
misused, abused, or just plain ignored.

The complete list, available at http://cwe.mitre.org/data/definitions/862.html with more complete
information on causation and mitigation/resolution, includes:

1. (CWE-89) SQL Injection: Improper Neutralization of Special Elements used in a SQL
Command – software constructs all or part of a SQL command using externally-influenced input
from an upstream component, but does not neutralize or incorrectly neutralizes special elements
that could modify the intended SQL command when it is sent to a downstream component.

2. (CWE-78) OS Command Injection: Improper Neutralization of Special Elements used in an
OS Command – software constructs all or part of an OS command using externally-influenced
input from an upstream component, but does not neutralize or incorrectly neutralizes special
elements that could modify the intended OS command when it is sent to a downstream
component.

3. (CWE-120) Classic Buffer Overflow: Buffer Copy without Checking Size of Input – program
copies an input buffer to an output buffer without verifying that the size of the input buffer is less
than the size of the output buffer, leading to a buffer overflow.

4. (CWE-79) XSS: Improper Neutralization of Input during Web Page Generation – software
does not neutralize or incorrectly neutralizes user-controllable input before it is placed in output
that is used as a web page that is served to other users.

5. (CWE-306) Missing Authentication for Critical Function – software does not perform any
authentication for functionality that requires a provable user identity or consumes a significant
amount of resources.

6. (CWE-862) Missing Authorization – software does not perform an authorization check when an
actor attempts to access a resource or perform an action.

7. (CWE-798) Use of Hard-coded Credentials – software contains hard-coded credentials, such
as a password or cryptographic key, which it uses for its own inbound authentication, outbound
communication to external components, or encryption of internal data.

8. (CWE-311) Missing Encryption of Sensitive Data – software does not encrypt sensitive or
critical information before storage or transmission.

http://cwe.mitre.org/data/definitions/862.html

 Common Software Vulnerabilities and Controls Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 39

9. (CWE-434) Unrestricted Upload of File with Dangerous Type – software allows the attacker to
upload or transfer files of dangerous types that can be automatically processed within the
product's environment.

10. (CWE-807) Reliance on Untrusted Inputs in a Security Decision – application uses a
protection mechanism that relies on the existence or values of an input, but the input can be
modified by an untrusted actor in a way that bypasses the protection mechanism.

11. (CWE-250) Execution with Unnecessary Privileges – software performs an operation at a
privilege level that is higher than the minimum level required, creating new weaknesses or
amplifying the consequences of other weaknesses.

12. (CWE-352) Cross-Site Request Forgery (CSRF) – web application does not, or cannot,
sufficiently verify whether a well-formed, valid, consistent request was intentionally provided by
the user who submitted the request.

13. (CWE-22) Path Traversal: Improper Limitation of a Pathname to a Restricted Directory –
software uses external input to construct a pathname that is intended to identify a file or directory
that is located underneath a restricted parent directory, but the software does not properly
neutralize special elements within the pathname that can cause the pathname to resolve to a
location that is outside of the restricted directory.

14. (CWE-494) Download of Code Without Integrity Check – product downloads source code or
an executable from a remote location and executes the code without sufficiently verifying the
origin and integrity of the code.

15. (CWE-863) Incorrect Authorization – software performs an authorization check when an actor
attempts to access a resource or perform an action, but it does not correctly perform the check.
This allows attackers to bypass intended access restrictions.

16. (CWE-829) Inclusion of Functionality from Untrusted Control Sphere – software imports,
requires, or includes executable functionality (such as a library) from a source that is outside of
the intended control sphere.

17. (CWE-732) Incorrect Permission Assignment for Critical Resource – software specifies
permissions for a security-critical resource in a way that allows that resource to be read or
modified by unintended actors.

18. (CWE-676) Use of Potentially Dangerous Function – program invokes a potentially dangerous
function that could introduce vulnerability if it is used incorrectly, but the function can also be used
safely.

19. (CWE-327) Use of Broken or Risky Cryptographic Algorithm – use of a broken or risky
cryptographic algorithm results in the exposure of sensitive information.

20. (CWE-131) Incorrect Calculation of Buffer Size – software does not correctly calculate the size
to be used when allocating a buffer, which could lead to a buffer overflow.

21. (CWE-207) Improper Restriction of Excessive Authentication Attempts – software does not
implement sufficient measures to prevent multiple failed authentication attempts within a short
time frame, making it more susceptible to brute force attacks.

22. (CWE-601) Open Redirect: URL Redirection to Untrusted Site – web application accepts a
user-controlled input that specifies a link to an external site, and uses that link in a Redirect; this
simplifies phishing attacks.

23. (CWE-134) Uncontrolled Format String – software uses externally-controlled format strings in
print-style functions, which can lead to buffer overflows or data representation problems.

24. (CWE-190) Integer Overflow or Wraparound – software performs a calculation that can
produce an integer overflow or wraparound when the logic assumes that the resulting value will
always be larger than the original value. This can introduce other weaknesses when the
calculation is used for resource management or execution control.

25. (CWE-759) Use of a One-Way Hash without a Salt – software uses a one-way cryptographic
hash against an input that should not be reversible, such as a password, but the software does
not also use a salt as part of the input.

 Common Software Vulnerabilities and Controls Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 40

8.3 OWASP Top 10 Mobile Risks

The OWASP Mobile Security Project is a centralized resource intended to give developers and security
teams the resources they need to build and maintain secure mobile applications. The goal is to classify
mobile security risks and provide developmental controls to reduce their impact or likelihood of
exploitation.

The primary focus is at the application layer, taking into consideration the underlying mobile platform- and
carrier-inherent risks when threat modeling and building controls, targeting the areas where the average
developer can make a difference. Additionally, the focus is not only on the mobile applications deployed
to end user devices, but also on the broader server-side infrastructure which the mobile apps
communicate with, focusing heavily on the integration between the mobile application, remote
authentication services, and cloud platform-specific features. The top 10 risks identified so far are:

M1. Insecure Data Storage – sensitive data, locally stored plus cloud-synched, is left unprotected
as a result of not encrypting the data, caching data not intended for long-term storage, weak or
global permissions, or not leveraging platform best practices.

M2. Weak Server-Side Controls – server controls inadequately prevent OWASP Web Top 10,
OWASP Cloud Top 10, and OWASP Web Service Top 10.

M3. Insufficient Transport Layer Protection – limited to certain operations, like authentication,
but end-to-end transport layer protection is absent, or when the application fails to encrypt
network traffic to protect sensitive communications.

M4. Client-Side Injection – apps using browser libraries susceptible to XSS, HTML injection,
and/or SQL injection, abusing phone dialer + SMS, or abusing in-app payments because
untrusted data was not sanitized or escaped before rendering or execution.

M5. Poor Authorization and Authentication – part mobile, part architecture, when apps rely
solely on immutable, potentially compromised values (IMEI, IMSI, UUID) and/or hardware
identifiers persist across data wipes and factory resets, i.e., device ID or subscriber ID is used
as sole authenticator.

M6. Improper Session Handling – apps maintain session via HTTP cookies, OAuth tokens or
SSO authentication services, or using a device identifier and a session token, as well as not
making users re-authenticate every so often.

M7. Security Decisions Via Untrusted Inputs – caller permissions not checked at input
boundaries; can be leveraged to bypass permissions and security models—abusing URL
schemes in iOS, abusing intents in Android—to open door to malicious apps or client-side
injection.

M8. Side Channel Data Leakage – when inadequate understanding of what third-party libraries are
doing with user data (ad networks, analytics), programmatic flaws combine with not disabling
platform features to cause sensitive data to end up in unintended places, e.g., web caches,
keystroke logging, screenshots (iOS backgrounding), logs (system, crash), and temp
directories.

M9. Broken Cryptography – caused by broken implementation using strong crypto libraries or
custom, easily defeated crypto implementations that do not leverage battle-tested crypto
libraries.

M10. Sensitive Information Disclosure – private API keys on client allow apps to be reverse-
engineered with relative ease, exposing API keys, passwords, sensitive business logic, and
intellectual property.

8.4 OWASP Top 10 Cloud Security Risks

The aim of the OWASP Cloud-10 list is to help balance security risks with the cost advantage that the
Cloud and Software-as-a-service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service
(IaaS) models provide. The Top 10 Cloud Security Risks currently identified include:

 Common Software Vulnerabilities and Controls Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 41

R1. Data Ownership and Protection – using a public cloud for hosting a business service results
in loss of control of data without guaranteed backup and recovery. When an organization uses
the cloud, the data resides on the cloud provider’s resources, creating critical security risks that
must be carefully understood and mitigated.

R2. User Identity Management and Federation – inadequate control of user identities as services
and applications are moved to different cloud providers. Additionally, through integration,
existing in-house logon accounts managed by the organization can be used to access data in
the cloud. Typically, this integration is achieved via LDAP mechanisms or using SSO
technologies like SAML. While integration offers a substantially better user experience and
avoids many of the risks associated with separate islands of credentials, integrations carry
varied risks as well, including exposing the organization’s authentication systems and spoofing
of SSO assertions using stolen private keys.

R3. Regulatory Compliance – data perceived to be secure in one country may not be perceived
secure in another due to different regulatory laws across countries or regions. Even though
protected information may be entrusted to a cloud provider, the organization utilizing the
services of the cloud provider retains the ultimate responsibility for compliance with applicable
laws and regulations. The organization’s compliance responsibility encompasses its own
internal business operations as well as ensuring compliant operations within the cloud service
provider. For protected health information (PHI), depending on the nature of the services
offered by the cloud provider, the provider may be considered a covered entity and/or business
associate. A cloud provider that is a covered entity should be able to offer evidence of
compliance with government-enforced security and privacy rules.

R4. Business Continuity and Resiliency – refers to the ability of an organization to conduct
business operations in adverse situations, which include disruptions not only to information
technology infrastructure, but also any disruptions affecting the ability of the cloud service
provider to deliver its services at defined service levels, including, for example, the loss of key
personnel or the loss of access to business offices. When an organization uses a cloud
provider, the organization cedes control of business continuity planning for the data and
services entrusted to the cloud provider. Consequently, the organization must carefully
consider the ability of the cloud provider to provide continuity of service when adverse
situations arise. A degraded service level poses risks such as longer response times for access
to data or services. Recovery targets must be based on the time sensitivity of business
functions to loss of service.

R5. User Privacy and Secondary Uses of Data – many social application providers mine user
data for secondary usage, e.g., directed advertising, with vague controls over the extent to
which a cloud provider can disclose information about its using organizations and customers.
Secondary uses of data refer to uses of information collected by a cloud provider about a
subscriber for purposes other than the provision of services to the cloud subscriber.

R6. Service and Data Integration – risk of interception of data in transit is much greater for
organizations utilizing a cloud computing model, where data is transmitted over the Internet.
Unsecured data is susceptible to interception and compromise during transmission. Many of
these risks are mitigated by the proper use of SSL/TLS ciphers, IPSec, VPNs, SSL VPNs, and
properly implemented PKI.

R7. Multi-tenancy and Physical Security – in a cloud situation, this means sharing of resources
and services among multiple clients (CPU, networking, storage/databases, application stack),
increasing dependence on logical segregation and other controls to ensure that one tenant
deliberately or inadvertently cannot interfere with the security (confidentiality, integrity,
availability) of other tenants. Isolation approaches include use of virtualization technologies
such as virtual machines, application-level isolation through processes, threads, or application-
managed contexts, and database-level isolation through the use of separate database
instances, tablespaces, or record identifiers.

R8. Incidence Analysis and Forensic Support – in the event of a security incident, applications
and services hosted by a cloud provider are difficult to investigate as logging may be distributed

 Common Software Vulnerabilities and Controls Rev 0.9 (31-Jul-13)

 Security Development Lifecycle (SDL): Confidential Page 42

across multiple hosts and data centers which could be located in various countries and hence
governed by different laws. Also, along with log files, data belonging to multiple customers may
be co-located on the same hardware and storage devices and hence a concern for law
enforcement agencies for forensic recovery. Organizations must carefully evaluate the tools
available from the cloud provider for conducting investigations as security incidents may require
the prompt collection of evidence for possible civil or criminal proceedings.

R9. Infrastructure Security – infrastructure must be hardened and configured securely, and the
hardening/configuration baselines should be based on industry best practices. Applications,
systems and networks must be architected and configured with tiers and security zones, with
access configured to only allow required network and application protocols. Administrative
access must be role-based, and granted on a need-to-know basis. Regular risk assessments
must be done, preferably by an independent party. A policy and process must be in place for
patching/security updates based on risk/threat assessments of new security issues.

R10. Non-production Environment Exposure – any organization that develops software
applications internally employs a set of non-production environments for design, development,
and test activities. The non-production environments are generally not secured to the same
extent as the production environment. If an organization uses a cloud provider for such non-
production environment, then there is a high risk of unauthorized access, information
modification, and information theft.

	Revision History
	Table of Contents
	1 Purpose and Scope
	2 Introduction
	3 Good’s Security Development Lifecycle (SDL)
	3.1 Security Lifecycle Overview
	3.2 Phase 1: Inception (Ideas)
	3.3 Phase 2: Release Planning
	3.4 Phase 3: Scrum
	3.5 Phase 4: Validation
	3.6 Phase 5: Release
	3.7 Phase 6: Production

	4 Melding Agile with Security
	4.1 Security Education
	4.2 Security Implications Review
	4.3 Threat Modeling: The Cornerstone of the SDL
	4.4 Secure Design Review (SDR)
	4.5 Tooling and Automation
	4.6 Penetration and Fuzz Testing

	5 SDL Practices and Procedures
	5.1 Security Implication Review
	5.2 Threat Modeling
	5.2.1 Modeling Stage
	5.2.1.1 Decompose the Application
	5.2.1.2 Map the Data Flows
	5.2.1.3 Review the Security Profile

	5.2.2 Description Stage
	5.2.2.1 Complete a STRIDE Assessment
	5.2.2.2 Document the Threats

	5.2.3 Prioritization Stage
	5.2.3.1 Rate the Original Risks
	5.2.3.2 Mitigate the Threats
	5.2.3.3 Rate the Residual Risks
	5.2.3.4 Optional Use of Microsoft’s Threat Modeling Tool

	5.2.4 Replace General Mitigation Actions with Concrete Security Requirements
	5.2.5 Update the Threat Model
	5.2.6 Prioritize Security Requirements Using DREAD Scores

	5.3 Advise Product Owner – Jointly Agree on Priorities
	5.4 Complete Secure Design of Prioritized User Stories
	5.5 Modify User Story with Security Requirements and Design
	5.6 Secure Design Review (SDR)
	5.7 Secure Coding and Security Testing Practices
	5.7.1 Multiple Independent Levels of Security (MILS)
	5.7.2 Defensive Programming
	5.7.3 Security Testing
	5.7.3.1 Discovery
	5.7.3.2 Vulnerability Scan
	5.7.3.3 Vulnerability Assessment
	5.7.3.4 Security Assessment
	5.7.3.5 Penetration Test
	5.7.3.6 Security Audit
	5.7.3.7 Security Review

	5.8 Proper Release Documentation and Secure Packaging
	5.9 Incident Management
	5.9.1 Containment
	5.9.2 Eradication
	5.9.3 Recovery
	5.9.4 Post-Incident Analysis

	5.10 End-of-Life (EOL) Security Policy
	5.10.1 Sunsetting Criteria
	5.10.2 Information Disposal and Media Sanitization

	6 Software Security Principles
	6.1 Reduce the Attack Surface
	6.2 Secure by Design Not Afterthought
	6.3 Insider Threats as the Weak Link
	6.4 Assume the Network is Compromised
	6.5 Secure by Default
	6.6 Defense in Depth
	6.7 Principles for Reducing Exposure
	6.8 The Insecure Bootstrapping Principle
	6.9 Input Validation
	6.10 Security Ethics

	7 High-Level Security Requirements
	7.1 Confidentiality Requirements
	7.2 Integrity Requirements
	7.3 Availability Requirements
	7.4 Authentication Requirements
	7.5 Authorization Requirements
	7.6 Auditing/Logging Requirements
	7.7 Session Management Requirements
	7.8 Errors and Exception Management Requirements
	7.9 Configuration Parameters Management Requirements
	7.10 Sequencing and Timing Requirements
	7.11 Archiving Requirements
	7.12 Internationalization Requirements
	7.13 Deployment Environment Requirements
	7.14 Third-Party Software Procurement Requirements
	7.15 Antipiracy and Anti-tampering Requirements

	8 Common Software Vulnerabilities and Controls
	8.1 OWASP Top 10
	8.2 CWE Top 25
	8.3 OWASP Top 10 Mobile Risks
	8.4 OWASP Top 10 Cloud Security Risks

