
Merchant Aggregator PG
Onboarding Guide
For In-App Payments and Account Preprovisioning

US Edition | April 2019 | Samsung Pay SDK 2.6.00 | Doc Rev 1.0

Page | ii

Samsung Pay Aggregator PG Onboarding and Integration

Table of Contents
Samsung Pay and the PG — what’s the relationship? ... 1

What is the Samsung Pay SDK and what does it do?... 1

Tokenized payments .. 2

Network Token mode (direct) .. 3

Gateway Token mode (indirect) ... 3

Account preprovisioning .. 4

Communication workflow .. 4

Direct mode – network token ... 4

Indirect mode – gateway token ... 5

Use cases and recommended UX... 6

Use Case #1: Get User Information ... 6

Use Case #2: Get User Information AND request payment .. 8

Use Case #3: Request standard in-app payment ..10

Summary of integration and processing tasks/roles ...12

Integration steps for merchant aggregation ...13

Step 1. Configure your project to import the Samsung Pay SDK ..13

Step 2. Create the Samsung Pay instance and check app status14

Step 3. Support Use Case #1 – Get user profile information ..15

Step 4. Support Use Case #2 – Get user info AND request payment17

Step 5. Support Use Case #3: Request standard in-app payment19

Handling user-entered changes ..22

Configuring payment sheet controls ...23

Sample payment credential...27

Aggregator PG Onboarding and Integration Samsung Pay

Page | iii

Testing and validating your SDK-SDK integration ..28

Testing prerequisites ...28

General test conditions and objectives ...28

Recommended test cases ...28

Collecting and sending device dump state (SYSDUMP) logs ..29

Deployment ...29

Branding ..29

List of Illustrations
Figure 1. General in-app payment process flow .. 2

Figure 2a. Network token mode .. 3

Figure 2b. Gateway token mode .. 3

Figure 3a. Network token (direct) mode .. 4

Figure 3b. Gateway token (indirect) mode .. 5

Figure 4. Get User Info workflow .. 6

Figure 5. Get User Info UX ... 7

Figure 6. Get User Info AND Request Payment workflow .. 9

Figure 7. Get User Info AND Request Payment UX ... 9

Figure 8. Request payment for a Samsung Pay user workflow ..10

Figure 9. Standard In-App Payment request UX ..11

Figure 10. Samsung Pay User Info screen ...15

Figure 11. Payment Info AND User Info ..19

Figure 12. Standard Payment Sheet UI ...22

Aggregator PG Onboarding and Integration Samsung Pay

Page | 1

Samsung Pay and the PG — what’s the relationship?
Accepted almost anywhere a credit card can be swiped or tapped, Samsung Pay also works in-app and online. For Samsung Pay users
purchasing goods and services online, it is our payment gateway (PG) partners that actually process the credit card payment, authorizing
transactions upon electronic approval by the card issuer. In terms of online payments, PGs help expand the merchant’s business by
improving customer service, consolidating vendors, and streamlining reporting and reconciliation.

Moreover, when it comes to integrating merchant apps with Samsung Pay, the PG can serve as a merchant “aggregator,” doing most of
the heavy lifting via extensions to its proprietary SDK and, in the process, save its merchant partners significant development time and
technical resources. Or, if they prefer, merchants can onboard with Samsung Pay and the PG separately and then undertake the required
integration work independently. The latter approach generally applies to merchant apps that are already successfully integrated with
their PG’s SDK and want to avoid disruption.

This document offers guidance on the merchant aggregation option, strongly advocating this approach to (a) standardize the merchant
onboarding experience by minimizing the necessary touchpoints and (b) reduce the go-to-market (GTM) time typically required for
merchant app deployments that support Samsung Pay as a payment method.

A PG-Samsung Pay partnership:

• Allows merchants to easily support Samsung Pay as an online payment method from their PG-enabled Android applications

• Provides simple configurations for the majority of merchant use cases

• Supports automated new customer provisioning flows in addition to traditional checkout.

Keeping the foregoing in mind, let’s take brief look at the Samsung Pay SDK and then we’ll step through the respective onboarding flows.

What is the Samsung Pay SDK and what does it do?
The Samsung Pay SDK is an application framework for integrating selected Samsung Pay features with Android-based partner apps
on Samsung devices. For merchant apps, Samsung Pay’s In-App Payments service gives online customers the option of paying for
products and services with Samsung Pay, as well as letting merchants set up (provision) a new customer account on demand, essentially
auto-filling the merchant’s online account creation form with corresponding information from Samsung Pay. Samsung Pay’s trusted
authentication mechanisms (PIN, iris or fingerprint scan) ensure that both payment and any user profile information shared with the
merchant are authorized by the legitimate Samsung Pay user.

Before diving deeper into the Samsung Pay SDK and its constituent components, it’s important to understand how the in-app payments
service works. Such a discussion begins on the next page.

Page | 2

Samsung Pay Aggregator PG Onboarding and Integration

Understanding the In-App Payments service
First of all, a mobile wallet like Samsung Pay gives users the freedom to securely enroll and store their credit, debit, and gift cards on
their Samsung Galaxy smartphones and Samsung wearables. Samsung Pay replaces the actual card number with a unique digital card
number called a token so the true card number is never revealed and therefore cannot be compromised. In other words, users can leave
their bulky and often disorganized billfolds loaded with plastic cards at home and, instead, use their smartphones and wearables to make
purchases with the added confidence that their card information is protected. And now the technology that supports secure in-store
purchases can be used for online (in-app) payments right from the merchant app.

Depending upon the PG, Samsung Pay’s In-App Payments service sends either (a) an encrypted network token that allows the merchant
or its PG to decrypt the payload and process the payment or (b) a PG token (also called a gateway token) that lets the merchant handle
the payload in much the same way as normal card payments are handled by their app.

But that’s not all. To help streamline the overall online shopping and payment experience, Samsung Pay APIs can be called to obtain the
user profile information needed to create a new user account with the merchant’s online store — name, billing address, shipping address,
phone, email, or any combination thereof — saving the user redundant data entry. Like requesting payment, account preprovisioning
requires secure user authentication before any personal information is shared with the merchant app. If users have items in their
shopping carts and are ready to checkout, they can then select Samsung Pay as the payment method.

The most important prerequisite for both payment and account preprovisioning is that both apps — (a) Samsung Pay and (b) the
merchant app integrated with the Samsung Pay SDK and the PG’s SDK — are installed on the same eligible Samsung mobile device.
You can review the list of Samsung Pay-compatible devices at https://www.samsung.com/us/support/owners/app/samsung-pay under
Compatiblity.

Tokenized payments
Samsung Pay’s In-App Payments service supports two types of tokens — gateway tokens (indirect) and network tokens (direct). What’s
the difference? Well, if you’re a PG like First Data that can accept encrypted token bundles directly from the user’s device over the
internet, the merchant app will need to request an encrypted token bundle from Samsung Pay first, before sending it on to the PG. By
contrast, if you’re a PG like Stripe, the transaction authorization request is sent from the SDK-integrated merchant app to the PG via the
Samsung-PG Interface Server (PGIS), which furnishes a gateway token, along with merchant identification.

Figure 1 illustrates the general process flow between the merchant app, Samsung Pay, and the financial network, including the PG.

Figure 1. General in-app payment process flow

The essential difference is that a network token requires the merchant app to handle decryption of the token bundle or work with the PG
to handle decryption, whereas gateway token decryption is always handled by the PG via the Samsung-PG Interface Server. The essential
differences in terms of process steps are enumerated in Figures 2a and 2b, respectively.

https://www.samsung.com/us/support/owners/app/samsung-pay

Aggregator PG Onboarding and Integration Samsung Pay

Page | 3

Network Token mode (direct)
1. In the merchant app at checkout, the user selects Samsung

Pay as the payment method; the Samsung Pay app requests
partner verification from the Samsung Pay Online Payment
Server.

2. Encrypted payment information is passed from the Samsung
Pay app to the PG through the merchant app via the PG's
SDK and governing APIs.

3. Applying the merchant's private key, the PG decrypts the
payment information structure and processes the payment
through the Acquirer and the appropriate payment card
network (American Express, Discover, Mastercard, or Visa).

4. Upon receiving the card issuer's verdict (accept/decline), the
PG notifies the merchant app via applicable APIs.

Figure 2a. Network token mode

Gateway Token mode (indirect)
1. In the merchant app at checkout, the user selects Samsung

Pay as the payment method; the Samsung Pay app then
requests partner verification from the Samsung Pay Online
Payment Server.

2. Encrypted payment information and the Samsung Pay
Service ID for the PG aggregator are passed to the Samsung-
PG Interface Server.

3. The interface server sends a transaction authorization
request to the PG on behalf of the merchant; the PG verifies
the merchant ID before generating a transaction Reference ID.

4. The Reference ID is passed to the merchant app via an SDK
callback; the merchant app then passes the Reference ID to
the PG for payment processing execution.

5. The Samsung-PG Interface Server returns the payment
token to the PG (this is the gateway token it received from
the Samsung Pay app in Step 2).

6. The PG continues payment processing with the appropriate
acquirer and payment network.

7. The PG passes the issuer's verdict (approve/decline) to the
merchant app for display to the user.

Figure 2b. Gateway token mode

Page | 4

Samsung Pay Aggregator PG Onboarding and Integration

Account preprovisioning
Account preprovisioning refers to secure onboarding of a new customer within the merchant app based on information provided by
Samsung Pay. Using the In-App Payments service, the merchant app can leverage Samsung Pay API calls and callbacks to obtain a
Samsung Pay user’s profile information for new account creation, eliminating all or most manual entry. This service class can also request
payment for the new customer’s initial order (pending items in the user’s shopping cart) with a payment card selected in Samsung Pay.
In all cases, without the user’s explicit authentication in Samsung Pay via secure PIN or biometric scan (fingerprint or iris), no personal
information is shared with the merchant app and no payment is authorized.

PGs adopting the merchant aggregation model should consider embedding the Samsung Pay SDK mechanisms for account
preprovisioning in the PG’s SDK, along with the payment transaction elements, as a value-added service.

In any case, API calls and callbacks for account preprovisioning all take place locally on the device. No separate or special server
interaction is necessary unless the user opts to make an initial purchase with Samsung Pay. When this is the case, Samsung Pay’s
tokenized payment logic is applied as discussed in the preceding section.

Communication workflow
Let’s take a brief look at the end-to-end workflow between the merchant app and the PG Server using Samsung Pay’s In-App Payments
service; first for network token mode (Figure 3a) and then for gateway token mode (Figure 3b).

Direct mode – network token

Generated by the merchant app in direct mode and sent through the PG SDK, the payment request contains the transaction information
necessary for PG payment processing — card brand (American Express, Discover, Mastercard, Visa), transaction amount, required
addresses (billing/shipping), and so forth; the PG SDK then submits the required keys and other merchant information, as required,
for merchant verification by the PG server. The result of merchant verification (success/failure) is returned to the PG SDK. It then sends

Figure 3a. Network token (direct) mode

Aggregator PG Onboarding and Integration Samsung Pay

Page | 5

the PG’s Service ID1 to the Samsung Pay SDK, which requests partner verification through the Samsung Pay app from the Samsung
Pay Online Payment Manager (OPM)/Developers portal. Once the partner information is verified (Service ID matches supported PG
SDK version), Samsung Pay displays the corresponding payment sheet on the mobile device for user authentication. If authentication
is successful, the Samsung Pay app requests the merchant certificate on file with the OPM/Portal. Via the Samsung Pay SDK, the
corresponding certificate is returned to the PG SDK, which sends the encrypted transaction payload to the PG Server, which processes
payment through the designated payment network. Official bank/issuer approval is received from the PG Server in a callback to the PG
SDK, which updates the merchant app for display to the user in a standard transaction success/failed message.

Indirect mode – gateway token

The flow for indirect mode is identical to the flow for direct mode up until the Samsung Pay app receives the merchant certs from
the OPM/Portal. At that point, in contrast to direct mode, the Samsung Pay app sends its encrypted transaction payload to the PGIS,
which authorizes its submission on behalf of the merchant; whereupon the PG Server generates a Transaction Reference ID, which is
returned to the PG SDK through the Samsung Pay app and Samsung Pay SDK. The PG SDK initiates completion of the transaction by
sending the PG-recognized Merchant ID and Transaction Reference ID to the PG Server for payment processing execution with the
appropriate financial network. Once bank/issuer approval is received from the PG Server in a callback to the PG SDK, the merchant app
updates its display with the appropriate transaction success/failed message.

1 For PGs using the aggregation model, there is one Samsung Pay Service ID for all requests, regardless of the merchant. If the PG is not aggregating merchants, or the
merchant making the request is a standalone partner (i.e., not a participant in the PG’s Samsung Pay aggregation program; onboarded separately with the Samsung Pay
Developers portal), then the Service ID will be the one uniquely assigned to that particular merchant, which means the merchant must include it in the original payment
request.

Figure 3b. Gateway token (indirect) mode

PGs can onboard with Samsung Pay under either the merchant aggregation or standalone (single) model — or both — although the
aggregation model is strongly advocated for its ease of implementation and scalability. With aggregation, the PG sets up a single
Samsung Pay Service ID, which it can then share with its participating merchants when they onboard with the PG. Meanwhile, the
Merchant ID or registration code assigned to the merchant by the PG, along with any additional checks, verify the merchant and the
merchant’s mobile app to the PG’s backend as a valid partner/vehicle for purposes of card payment processing.

https://pay.samsung.com/developers
https://pay.samsung.com/developers

Page | 6

Samsung Pay Aggregator PG Onboarding and Integration

Next, let’s take a look at the general use cases supported by the In-App Payments service. Please note that for the aggregation model,
“merchant app” is presumed to be integrated with the PG SDK, which will embed or subsume the Samsung Pay SDK to work as described.

Use cases and recommended UX
Samsung Pay’s In-App Payments service supports three fundamental use cases:

1. Get Samsung Pay user information to preprovision a new customer account in the merchant app.

2. Get Samsung Pay user information AND request payment for the new customer’s initial order.

3. Request standard in-app payment for a Samsung Pay user; no user information needed for merchant account setup.

Case #3 typically applies to returning customers with established merchant accounts or new customers who opt to manually enter their
user information for merchant account creation and then want to make a purchase. All three use cases assume that the user is already a
Samsung Pay registered user and that the Samsung Pay app is installed on the same device running the merchant app.

Use Case #1: Get User Information
Story. As an online merchant, I want to import the customer profile information from Samsung Pay that I need to create a new account
in my online store for a shopper who is also a Samsung Pay user, thereby sparing the shopper from having to manually enter data into
my app that is already available from Samsung Pay. But, it’s important that no user information be collected without the user’s explicit
consent via authentication using Samsung Pay’s biometric scan or entering a valid Samsung Pay PIN. If authentication fails or times-out,
the user information request must be aborted before any user data is transmitted to my merchant app.

Workflow. Figure 4 captures the essential workflow for account preprovisioning.

Figure 4. Get User Info workflow

First, via the PG’s SDK, the merchant app checks the status of the Samsung Pay app by calling the getSamsungPayStatus() API, which
returns one of the following values: SPAY_READY, SPAY_NOT_READY, or SPAY_NOT_SUPPORTED. A status of “ready” means the
Samsung Pay app is installed on the device and setup is complete. “Not ready” means the app is installed but still needs to be set up by
the user. “Not supported” means the device is not a Samsung device or is not an eligible Samsung device.

Aggregator PG Onboarding and Integration Samsung Pay

Page | 7

If Samsung Pay is ”not ready” (in a stub-only state or not signed-in to a Samsung Account) or if Samsung Pay is not supported by
the device, the merchant app should abort further preprovisioning steps1. If the status result is “ready,” the merchant app can display
a branded Samsung Pay button, presenting the user with the option of using Samsung Pay to create a new user account for the
merchant’s online store. If the user taps the Samsung Pay button, the merchant app calls the SDK’s PaymentManager class (also used
for transactions) to initiate a connection with the Samsung Pay app, binding the app to the In-App Payments service and requesting the
user information in Samsung Pay with a call to getUserInfo(). On success, the listener callback returns a JSON string that the merchant
app can parse into the constituent components of the user information the merchant app requested — name, billing address, shipping
address, phone, email, or any combination thereof.

Recommended UX. Reflected in Figure 5 below, the user experience (UX) for this use case will need to be based on the merchant app’s
customer account sign-up/sign-in policy and procedure, and entails designating the merchants app’s most appropriate UI entry point
for account preprovisioning using Samsung Pay. A branded Samsung Pay button asset should only be displayed to users who don’t yet
have an account with your store but are verified Samsung Pay users. The latter is confirmed with a getSamsungPayStatus() API call that
checks whether a supported version of the Samsung Pay app is installed on the device and in “ready” status.

1 Although not included in the guidance presented here, when the status of the Samsung Pay app is SPAY_NOT_READY, the PG’s SDK can support the option of calling either
the activateSamsungPay() method to launch the pay app so the user can register their Samsung Account and enroll at least one payment card, or updateSamsungPay()
to let the user upgrade to a version of the pay app that is compatible with the respective versions of the merchant app and the Samsung Pay SDK it implements. Refer to the
SDK’s Javadoc reference and Samsung Pay SDK Programming Guide for additional details and guidance.

Figure 5. Get User Info UX

If the Samsung Pay app is “ready,” the merchant app should then display a branded “create new account using Samsung Pay” button that
presents the user with the option of creating/registering a new online store account using information in Samsung Pay. If the user taps
the option, the merchant app makes the necessary API calls to have Samsung Pay display a “User Info” screen, which allows the user to
edit the information before granting permission to share the data by authenticating the action with a fingerprint/iris scan or entering a
valid Samsung Pay PIN.

https://pay.samsung.com/developers/resource/brand
https://d3sfvyfh4b9elq.cloudfront.net/ptr/guide/techguide/v1.4/guide/00_01_about_this_guide.html

Page | 8

Samsung Pay Aggregator PG Onboarding and Integration

Use Case #2: Get User Information AND request payment
Initiating a payment request after account preprovisioning offers even more user convenience.

Story. As an online merchant that supports tokenized payments, I want to request payment on behalf of a new shopper for items in my
online store using Samsung Pay. At the same time and with the user’s explicit permission, I want to import the user’s profile information
already on file in Samsung Pay in order to create a new customer account in my online store so the user isn’t required to manually enter
the information into my account creation form.

Workflow. As with the previous use case, when the Samsung Pay app is in “ready” status on the device, the merchant app displays a
branded Samsung Pay button at an appropriate UI entry point. In contrast to Use Case #1, however, the button here should indicate both
account creation and checkout using Samsung Pay in accordance with Samsung Pay branding guidelines. Use Case #3, discussed later,
only needs to indicate the payment method option.

Otherwise, the payment request for pending items in the user’s shopping cart is initiated by calling startInAppPayWithUserInfo() with
a customSheetPaymentInfo object, RequestType.PAYMENT_CARD and/or RequestType.NO_SHEET_UPDATE_CALLBACK, and a
userInfoListener callback. Samsung Pay will then generate the transaction payload along with the user information request for account
preprovisioning.

Presuming the user information is available and the request is successfully received, both payment and user information is displayed
for card selection and/or editing of the user’s profile information. User authentication with PIN or biometric scan transmits the user
information to the merchant app together with the user’s transaction authorization. Although the SDK’s CustomSheet object, sent via a
startInAppPayWithUserInfo() call supports address and amount controls, we recommend display of the transaction total amount only.

Other SheetItemTypes for standard In-App Payments discussed in Use Case #3 — specifically, the controls for a spinner (subscription/
recurring payments) and plain text content — are not supported for account preprovisioning. The Fast Checkout (FCO) feature is also not
supported in a startInAppPayWithUserInfo() call.

As with the getUserInfo() method discussed in Use Case #1, in a startInAppPayWithUserInfo() call the user information for new
account creation is returned in the userInfoListener callback. The merchant app then calls notifyUserSignUpResult() to transmit the
user’s account creation result back to Samsung Pay.

For the payment component, the transaction result is included in transactionInfoListener. If the PG supports network tokens (direct
mode), the transaction payload object returned in transactionInfoListener.onSuccess() will include encrypted payment credentials.
If the PG supports gateway tokens, the payload includes the PG’s token reference ID for payment processing. These are then submitted
to the PG’s backend via its proprietary SDK using the direct or indirect mode, respectively, described above under Tokenized payments.

Once the payment request has been processed, the PG sends back the result (transaction success/failure) directly through its PG SDK as
described and illustrated in the communication workflow for the respective direct/indirect mode supported.

Figure 6 shows the general workflow for Use Case #2. Again, as reflected on the next page, it’s important to remember that the
callback for obtaining payment information (transactionInfoListener) is distinct from the callback for obtaining user information
(userInfoListener).

https://pay.samsung.com/developers/resource/brand

Aggregator PG Onboarding and Integration Samsung Pay

Page | 9

Figure 6. Get User Info AND Request Payment workflow

Recommended UX. Reflected in Figure 7, the suggested UX directly parallels Use Case #1 but is extended to present an abbreviated
payment sheet for secure user authentication. Any user changes to the selected card, billing and/or shipping addresses made in
Samsung Pay are contained in cardInfoUpdated() callbacks. If these changes result in an adjusted transaction amount — for instance, if
the merchant offers a discount for a credit card brand like Visa® as opposed to other card brands, or if a different shipping address incurs
a change in the shipping charge (+/-) — the merchant app calls the SDK’s updateSheet() method to send Samsung Pay the adjusted
transaction amount.

Figure 7. Get User Info AND Request Payment UX

Page | 10

Samsung Pay Aggregator PG Onboarding and Integration

Use Case #3: Request standard in-app payment
(no user information needed for account preprovisioning)

This use case provides Samsung Pay as a standard payment method when there’s no need for preprovisioning information (i.e., the
user already has an account with the merchant’s online store). Here, a payment request can be made as soon as the merchant app
checks Samsung Pay app status on the device and determines that it is in a “ready” state.

Story. As an online merchant supporting tokenized payments, I want to request payment using Samsung Pay on behalf of a returning
shopper for any items in the user’s shopping cart selected for checkout and payment.

Workflow. For this use case, you’ll need to take the following steps:

1. Check the ready status of the Samsung Pay app on the device.

2. Start the Payment Manager to establish the service binding and verify the merchant app.

3. Get payment card information and the transaction amount, including updates.

4. Get/update the user’s shipping address if shipping charges are incurred (presumes flat-rate shipping is not offered).

5. Authenticate the user.

6. Submit payment information to your PG.

7. Verify transaction success or failure.

The general workflow for this use case is shown in Figure 8.

Figure 8. Request payment for a Samsung Pay user workflow

For this use case, the callbacks are implemented using the CustomSheetTransactionListener method, rather than the abridged
TransactionInfoListener for a new customer’s initial order implemented for Use Case #2.

Aggregator PG Onboarding and Integration Samsung Pay

Page | 11

Recommended UX. Figure 9 shows the suggested UX for payment requests in which no user information is needed. Card selection and
changes to the Billing address and Delivery address are supported in the payment sheet UI. However, callback iterations will need to
be handled by the merchant app when the user makes repeated changes to the information on the payment sheet requiring transaction
amount updates prior to user authentication.

Figure 9. Standard In-App Payment request UX — no account preprovisioning required

Keeping these three primary use cases in mind, we can now delve into SDK-within-SDK integration for merchant aggregation.

Samsung Pay token data
The data included in the token provided to the PG by Samsung Pay, includes the following fields:

Field Definition/Description Required (Y/N) Sample Value
merchantRef Merchant reference value Y <pg_assigned_value>
cardNumber DPAN Y 4111111111111111
exp Expiration date Y 0420
cryptogram Samsung Pay cryptogram Y AK+zkbPMCORcABCD3AGRAoACFA==
eci 3D-secure electronic commerce indicator (ECI) Y 5
tokenizationMethod Method used for generating token Y samsung_pay
utc Coordinated universal time (UTC) - timestamp N 2147483647
merchantName Name of originating merchant N David’s Burgers
appPackageName Application package name (merchant app) N com.davidsburgers.orderahead
appSignature Application signature (signed by developer) N cert.rsa of application
merchantDomain Merchant domain N checkout.davidsburgers.com

Page | 12

Samsung Pay Aggregator PG Onboarding and Integration

Summary of integration and processing tasks/roles
A successful in-app integration requires participation and critical contributions from each of the partners involved — merchant, PG,
and Samsung Pay. For the merchant aggregation model, the PG does much of the heavy lifting with its SDK to correctly configure
the merchant’s transaction request for payment using Samsung Pay, standardizing the integration process and thereby saving its
aggregated merchants significant development time.

The following table summarizes the principal tasks and contributions needed for a successful outcome.

Phase Merchant Merchant Aggregator PG Samsung Pay
Onboarding • Enable Samsung Pay in PG portal

• Update Android project with PG’s newest
SDK for Android

• Add Samsung Pay tag to project’s Android
manifest

• Provide website/portal for merchant
registration and account administration

• Provide a common serviceId to PG for all
of its aggregated merchants

Initialization • Initialize PG SDK using tokenization key • Fetch In-App serviceId (not hard-coded
or cached)

• Check if merchant app is blacklisted

Check readiness • Call PG method (e.g.,
SamsungPay#isReadyToPay)

• Pass in-test versus release flag

• Retrieve merchant-supported card
brands and pass to Samsung Pay SDK

• Use serviceId to check Samsung Pay
status

• Use merchant-supported card brands
to match user-enrolled card brands in
Samsung Pay

• Check Fast Checkout (FCO) status
• Configure PG SDK to display Samsung Pay

button or Samsung Pay FCO button, plus
last 4 digits of card

• Validate PG serviceId and relax merchant
app verification checks

Create transaction • Call PG method (e.g.,
SamsungPay#requestPayment)

• Pass-in transaction amount
• Pass-in merchant display name
• Pass-in shipping address required flag

(optional; default = False)
• Pass-in FCO enabled flag (optional;

default = False)
• Pass-in contact info required flag

(optional; default = False)

• Register TransactionInfoListener
• Call startInAppPayWithCustomSheet

with merchant-supplied parameters
• Set AddressInPaymentSheet option to

NEED_SHIPPING_SPAY if flag = True;
otherwise, default = NEED_BILLING_
SPAY (see note below)

• Receive paymentCredential from
Samsung Pay, including nonce

• Retrieve other info (email, phone, shipping
address) from Samsung Pay based on
merchant request

• Check test vs. release setting and connect
with appropriate PG environment (test or
production)

• Send token data
• Return PG nonce within

paymentCredential

Create account
(Use Case #1 only)

• Call PG method (e.g.,
SamsungPay#requestAccount)

• Pass-in shipping address required flag
(optional; default = False)

• Pass-in FCO enabled flag (optional;
default = False)

• Pass-in payment not required flag
(optional; default = False)

• Register AccountInfoListener
• Call startInAppPayWithUserInfo with

merchant-supplied parameters
• Set AddressInPaymentSheet option to

NEED_SHIPPING_SPAY if flag = True;
otherwise, default = NEED_BILLING_
SPAY (see note below)

• Receive paymentCredential from
Samsung Pay, including nonce, unless
excluded

• Retrieve other info (email, phone, shipping
address) from Samsung Pay based on
merchant request

• Check test vs. release setting and connect
with appropriate PG environment (test or
production)

• Send token data
• Return PG nonce within

paymentCredential

Note: When the shipping address is provided by the merchant app (shipping address required flag = False; AddressInPaymentSheet option is set to SEND_SHIPPING or
NEED_BILLING_SEND_SHIPPING), it is not user-editable in the payment sheet. Ergo, the shipping fee (if applicable) must be pre-calculated by the merchant app and included
in the total amount.

Aggregator PG Onboarding and Integration Samsung Pay

Page | 13

Integration steps for merchant aggregation
Onboarding a merchant aggregation PG is a joint activity involving the engineering and business teams of both the PG and Samsung Pay.
Because a one-size-fits-all implementation is impractical and standardization is nascent, the integration effort must be collaborative.

That said, there are some general “rules of thumb” and common sense best practices.

• For the merchant app developer, onboarding with an aggregator PG should be no more complicated than adding two external
libraries (.jar files) — the PG’s SDK and the Samsung Pay SDK — to the merchant’s existing Android project, declaring the
dependencies, and inserting (coding) the necessary PG API calls/callbacks needed to support Samsung Pay as an online
payment method.

Note: Aggregated merchants do not sign-up or onboard with Samsung Pay directly; configuration must be handled internally by
the PG’s SDK using the Samsung Pay SDK as an external third-party library.

• As an aggregator PG, you’ll need to support both a sandbox and a production environment, typically enabled from a
dashboard or settings menu controlled from the PG’s backend. In the sandbox environment, Samsung Pay will return valid
testing nonces that point to dummy account data so that the card selected in Samsung Pay is not charged.

• From its onboarding website, the aggregator PG should provide access to Samsung Pay’s branding guidelines and button
assets.

Note: The use of fragments or sub-activities to manage Samsung Pay interactions is highly recommended. Please also note that
the Samsung Pay SDK is designed exclusively for Samsung mobile devices supporting Samsung Pay and running Android Nougat
7.1.2 (API level 24–25) or later versions of the Android OS. A comprehensive Javadoc API reference is included with the Samsung
Pay SDK.

Step 1. Configure your project to import the Samsung Pay SDK
A. Configure Android Studio to include the Samsung Pay SDK as an external library with either a local dependency or a remote

dependency.

To add it as a local dependency:

• Download the Samsung Pay SDK from https://pay.samsung.com/developers and extract its contents to the desired
destination directory on your local machine.

• Copy samsungpay.jar from the libs folder of the destination directory to the libs folder of your Android project.

To add it as a remote dependency:

Open your project-level build.gradle file and declare the repository provided by your Samsung Pay representative.

repositories {
 <repository> {<url ‘url_address_string'>} // e.g., maven {url 'https://maven.spaysdk.io/public'}
}

B. In build.gradle, add the following dependency:

dependencies
 compile files("libs/samsungpay.jar")
{

Next, sync your Gradle files, either by clicking the Sync banner or by selecting the Sync Project with Gradle Files icon in the
toolbar.

https://pay.samsung.com/developers/resource/brand
https://pay.samsung.com/developers/resource/brand
https://pay.samsung.com/developers

Page | 14

Samsung Pay Aggregator PG Onboarding and Integration

C. Import the Samsung Pay SDK into your code with:

import com.samsung.android.sdk.samsungpay.v2;

D. Next, modify the metadata in your project’s manifest file1.

<application>
 <meta-data
 android:name="debug_mode" // used for standalone merchant app testing
 android:value="N" /> // not needed for merchant aggregation testing
 <meta-data
 android:name="spay_sdk_api_level"
 android:value="2.6" /> // max api_level -- very important
</application>

Here, API Level ("spay_sdk_api_level") governs the API dependency based on Country and Service Type to optimize version
control and to improve backward compatibility. This means that, upon integrating with the latest Samsung Pay SDK update, your
PG SDK can continue to use APIs based in previous levels. However, the API level specified in the manifest is the forward limit on
compatibility. In other words, setting the API level at 2.5 provides SDK support for all earlier versions (currently down to 1.4) but will
block access to APIs in level 2.6. Consequently, if you want to take advantage of the SDK’s most recently added APIs, you’ll need to
change the API level accordingly in the manifest file and do a new build (recompile) of your JAR.

Important: When you deploy, be sure to notify your aggregated merchants so they can upgrade their apps to your new SDK.

Step 2. Create the Samsung Pay instance and check app status
A. Set the serviceId (provided by your Samsung Pay rep) and ServiceType (INAPP_PAYMENT) in PartnerInfo before calling any

other APIs. Do not confuse serviceId with AppId; the two are mutually exclusive. This is an implicit call made by the PG’s SDK
on behalf of the merchant app as shown in the following example (your merchant aggregator PG serviceId will be unique).

String serviceID = "5c104c52bb944d8bb33be4" // aggregator PG's Samsung Pay service ID
Bundle bundle = new Bundle();
bundle.putString(SamsungPay.PARTNER_SERVICE_TYPE, SpaySdk.ServiceType.INAPP_PAYMENT.toString());
bundle.putString(SpaySdk.EXTRA_PARTNER_NAME, "Your Merchant Name");
PartnerInfo partnerInfo = new PartnerInfo(serviceId, bundle);

B. Check Samsung Pay app status on the device by calling the getSamsungPayStatus() method of the SamsungPay class.
This is another implicit call made on behalf of the merchant app that must be done before calling any other feature of the
Samsung Pay SDK.

void getSamsungPayStatus(StatusListener callback)

Determine if the onSuccess() value of StatusListener is SPAY_READY, SPAY_NOT_READY, or SPAY_NOT_SUPPORTED and take
appropriate action. Use the following example to structure the call.

samsungPay.getSamsungPayStatus(new StatusListener() {
 @Override
 public void onSuccess(int status, Bundle bundle) {
 switch (status) {
 case SamsungPay.SPAY_NOT_SUPPORTED:
 // Samsung Pay is not supported by the device--do not show Samsung Pay button
 break;

1 Be sure to place <meta-data> tags inside the <application> tag.

Aggregator PG Onboarding and Integration Samsung Pay

Page | 15

 case SamsungPay.SPAY_NOT_READY:
 // Samsung Pay not activated on the device or app version not updated
 // Either activate Pay app or update it--see Javadoc for both methods--
 // otherwise, don’t show Samsung Pay button
 break;
 case SamsungPay.SPAY_READY:
 // Samsung Pay is ready--show button
 break;
 default:
 // Unexpected result--do not show button
 break;
 }
 }
@Override
 public void onFail(int errorCode, Bundle bundle) {
 samsungPayButton.setVisibility(View.INVISIBLE);
 Log.d(TAG, "checkSamsungPayStatus onFail() : " + errorCode);
 }
});

Step 3. Support Use Case #1 – Get user profile information
To obtain the user profile information needed to auto-fill the merchant app’s account form without
requesting payment from Samsung Pay, call getUserInfo().

public void getUserInfo (RequestType[] requiredTypes, UserInfoListener listener)

When this API is called, the Samsung Pay app displays the requested information (Figure 10). If any
information is absent, users can manually enter the missing fields required to establish their account
by tapping EDIT. Authenticating with a Samsung Pay PIN or other biometric method (fingerprint,
iris) confirms the user’s permission to share the information and transmit it to your partner app.

RequestType[] can specify ALL or any combination of the following fields (listed here alphabetically):

• BILLING_ADDRESS – current billing address registered with the user’s Samsung
Account

• EMAIL – email address registered with the user’s Samsung Account

• NAME – first and last name registered with the user’s Samsung Account

• SHIPPING_ADDRESS – current or last selected shipping address on file in Samsung Pay

• TEL – telephone number registered with the user’s Samsung Account.

Below is an example of a call using the getUserInfo() method of the ServiceManager class that
requests the user’s information by item, instead of using the ALL option. The requested information
is received in a corresponding UserInfoListener() callback. Use the following example to aid you
with the structure of the API call.

Figure 10. Samsung Pay
User Info screen

UserInfoListener userInfoListener = new UserInfoListener() {
 @Override
 public void onSuccess(UserInfoCollection userInfo) {
 for (RequestType type : userInfo.getAvailableTypes()) {
 switch (type) {

Page | 16

Samsung Pay Aggregator PG Onboarding and Integration

 case: DATE_OF_BIRTH:
 // userInfo.getDate(type)
 break;
 case BILLING_ADDRESS:
 case SHIPPING_ADDRESS
 // Address address = userInfo.getAddress(type);
 break;
 default:

 // userInfo.getString(type)
 break;
 }
 }
 mServiceManager.notifyUserSignUpResult("", true, new UserSignUpNotifyListener() {
 @Override
 public void onSuccess() {
 Log.d(TAG, "notifyUserSignUpResult onSuccess ");
 }

 @Override
 public void onFail(int i, Bundle bundle) {
 Log.d(TAG, "notifyUserSignUpResult onFail "+i);
 }
 });

 @Override
 public void onFail(final int i, Bundle bundle) {
 // show failure msg
 mServiceManager.notifyUserSignUpResult("", false, new UserSignUpNotifyListener() {
 @Override
 public void onSuccess() {
 Log.d(TAG, "notifyUserSignUpResult onSuccess ");
 }

 @Override
 public void onFail(int i, Bundle bundle) {
 Log.d(TAG, "notifyUserSignUpResult onFail "+i);
 }
 });
 }
 };

private void startSamsungPayForSignupInfo() {

// Check Samsung Pay status here; if SPAY_READY, show branded button, then do the following:

 RequestType[] requestTypes = null;
 requestTypes = new RequestType[]{RequestType.NAME, RequestType.EMAIL,
 requestType.BILLING_ADDRESS, RequestType.SHIPPING_ADDRESS, RequestType.TEL};
 // << or >>
 // requestTypes = new RequestType[]{RequestType.ALL};
 // create new Samsung Pay instance here

Aggregator PG Onboarding and Integration Samsung Pay

Page | 17

 mServiceManager = new ServiceManager(this, partnerInfo);
 mServiceManager.getUserInfo(requestTypes, userInfoListener);
}

The merchant app can parse the data received in userInfoListener() to auto-fill its new account form for optional user verification and
submission. For the example UX, see Figure 5.

Step 4. Support Use Case #2 – Get user info AND request payment
To support merchant requests for user account preprovisioning, as well as to request payment for the user’s initial order (current
selections in the user’s shopping cart), call the startInAppPayWithUserInfo() method of the PaymentManager class. This sends a
request for both the payment credential (equivalent to startInAppPayWithCustomSheet() implemented for Use Case #3) and the
user’s personal information (same as getUserInfo) based on a single authentication confirmation implemented for Use Case #1.

Here, your partner app has the option of receiving many of the same callbacks included with startInAppPayWithCustomSheet(). Those
familiar with standard in-app payments for non aggregated merchants should be aware that, in the US market, the CustomSheet
object sent in the startInAppPayWithUserInfo() API call only supports an AddressControl and an AmountBoxControl. The other
SheetItemTypes are not supported, and are therefore not displayed in the payment sheet. The Fast Checkout (FCO) feature is also
not supported in a startInAppPayWithUserInfo() call. Given that the user profile information is also displayed in the UI, it is strongly
recommended that only the total transaction amount is shown for this use case, rather than a complete price itemization supported by
Use Case #3.

Otherwise, the available RequestTypes you can use here are the same as those listed above for Use Case #1, although for payment
requests, the following additional fields are added:

• NO_SHEET_UPDATE_CALLBACK – turns off callbacks when payment information is updated by the user in Samsung Pay;
i.e., card or address changes)

• PAYMENT_CARD – returns payment card information for the card selected in Samsung Pay. Please note that this field has
no effect when included in getUserInfo() — i.e., for Use Case #1 — so you can combine calls from your PG SDK for both use
cases (#1 and #2) using this field without any adverse behavior.

Structure the code for implementing the startInAppPayWithUserInfo() method and build payment sheet support using the following
sample code as your template.

private PaymentManager.CustomSheetTransactionInfoListener transactionListener
 = new PaymentManager.CustomSheetTransactionInfoListener() {
 // Callback received when the user changes the card on the payment sheet in Samsung Pay
 @Override
 public void onCardInfoUpdated(CardInfo selectedCardInfo, CustomSheet customSheet) {
 // Called when the user changes cards in Samsung Pay.
 // Newly selected cardInfo is passed so merchant app can update transaction amount
 // based on the different card (e.g., special discount, free shipping), as appropriate.
 }
 // This next callback is received when the payment is approved/authenticated by the user and
 // the transaction payload is generated. Payload can be an encrypted cryptogram (network token
 // mode) or the PG’s token reference ID (gateway token mode).
 @Override
 public void onSuccess(CustomSheetPaymentInfo response, String paymentCredential,
 Bundle extraPaymentData) {
 // Called when Samsung Pay creates the transaction cryptogram, which merchant app
 // then sends to merchant server or PG to complete in-app payment.
 }

Page | 18

Samsung Pay Aggregator PG Onboarding and Integration

 @Override
 public void onFailure(int errorCode, Bundle errorData) {
 // Called when an error occurs during cryptogram generation
 }
};
UserInfoListener userInfoListener = new UserInfoListener() {
 @Override
 public void onSuccess(UserInfoCollection userInfo) {
 for (RequestType type : userInfo.getAvailableTypes()) {
 switch (type) {
 case: DATE_OF_BIRTH:
 // userInfo.getDate(type)
 break;
 case BILLING_ADDRESS:
 case SHIPPING_ADDRESS
 // Address address = userInfo.getAddress(type);
 break;
 default:
 // userInfo.getString(type)
 break;
 }
 }

 @Override
 public void onFail(int errorCode, Bundle errorExtra) {
 Log.e(TAG, "onFail callback is called, errorCode: " + errorCode);
 // To get more reasons for the failure,
 // check the extra error codes in the errorData bundle, such as
 // SamsungPay.EXTRA_ERROR_REASON
 }
};

private void startSamsungPayForSignupInfo() {

 RequestType[] requestTypes = null;
 requestTypes = new RequestType[]{RequestType.NAME, RequestType.EMAIL,
 RequestType.BILLING_ADDRESS, RequestType.SHIPPING_ADDRESS,
 RequestType.TEL, RequestType.NO_SHEET_UPDATE_CALLBACK, RequestType.PAYMENT_CARD};
 // <<<<<<<<<< or >>>>>>>>
 // requestTypes = new RequestType[]{RequestType.ALL};

 // create new Samsung Pay instance here (see Step 2)

 mPaymentManager.startInAppWithUserInfo(paymentInfo.build(), transactionInfoListener,
 requestTypes, userInfoListener);
}

As with the getUserInfo() method, in a startInAppPayWithUserInfo() call, the user information for new account creation is returned
in a userInfoListener callback. For the payment component, the transaction result is delivered to transactionListener, which provides
the following events:

Aggregator PG Onboarding and Integration Samsung Pay

Page | 19

• onCardInfoUpdated() − called when the user changes the payment card. In this callback, the updateSheet() method must
be called to update the current payment sheet in cases where the selected card and/or address is changed by the user.

Figure 11. Payment Info
AND User Info

• onSuccess() − called when Samsung Pay confirms payment. It provides the
CustomSheetPaymentInfo object and the paymentCredential JSON string (see
sample payment credential).

CustomSheetPaymentInfo (Figure 11) represents the current transaction only. Although
only a total transaction amount is recommended for display, CustomSheetPaymentInfo
returns amount, shippingAddress, merchantId, merchantName, and orderNumber.
Additional API methods available in the onSuccess() callback are:

 – getPaymentCardLast4DPAN() – returns the last 4 digits of the digitized personal/
primary identification number (DPAN)

 – getPaymentCardLast4FPAN() – returns the last 4 digits of the funding personal/
primary identification number (FPAN)

 – getPaymentCardBrand() – returns the brand of the card used for the transaction
 – getPaymentCurrencyCode() – returns the ISO currency code in which the

transaction is valued
 – getPaymentShippingAddress() – returns the shipping/delivery address for the

transaction
 – getPaymentShippingMethod() – returns the shipping method for the transaction.

For PGs employing the direct model (network tokens), the paymentCredential is a
JSON object containing an encrypted cryptogram which the merchant app should pass
back to the PG. PGs using the indirect model (gateway tokens) rely on a JSON object
containing a reference ID (card reference – a token ID generated by the PG) and status
(i.e., AUTHORIZED, PENDING, CHARGED, or REFUNDED).

• onFailure() − called when the transaction fails; returns the error code and errorData bundle for the failure.

Remember to consult the latest Javadoc SDK reference for complete class, object and method definitions with additional sample code
related to all three use cases discussed in this document.

Step 5. Support Use Case #3: Request standard in-app payment
This use case does not require/request user profile information. It assumes a merchant store account for the user is already provisioned
and the user is ready to checkout upon selecting Samsung Pay as the payment method. For this case, there are two primary tasks:

1. Build the payment sheet

2. Create the transaction request

In this case, the aggregator PG can opt to let the merchant app explicitly configure the payment sheet for Samsung Pay after adding
samsungpay.jar as an external library in the merchant app’s own IDE.

Building the payment sheet. The payment sheet is governed by the CustomSheetPaymentInfo class, which includes an
AddressControl for billing and shipping addresses; an AmountBoxControl for listing multiple line items, subtotals, and a transaction
grand total; a PlainTextControl for custom messaging; and a SpinnerControl for selecting different shipping methods. (See Configuring
payment sheet controls below for more on each sheet control. See Handling user-entered changes for guidance on how the payment
sheet is updated based on user inputs to the payment sheet controls.)

Use the following example to aid you in structuring the desired mechanisms within your PG SDK.

Page | 20

Samsung Pay Aggregator PG Onboarding and Integration

// Create payment sheet controls and content
private CustomSheetPaymentInfo makeCustomSheetPaymentInfo() {

 ArrayList<PaymentManager.Brand> bList = new ArrayList<>();
 // Specify the card brands supported; if no brands are specified, all brands are allowed
 brandList.add(PaymentManager.Brand.VISA);
 brandList.add(PaymentManager.Brand.MASTERCARD);
 brandList.add(PaymentManager.Brand.AMERICANEXPRESS);
 // Next, build the sheet controls in sequence; AmountBoxControl must be last
 CustomSheet customSheet = new CustomSheet();
 customSheet.addControl(makeBillingAddressControl());
 customSheet.addControl(makeShippingAddressControl());
 customSheet.addControl(makePlainTextControl());
 customSheet.addControl(makeShippingMethodSpinnerControl());
 customSheet.addControl(makeAmountControl()); // must be last

 // Finally, build the payment sheet
 CustomSheetPaymentInfo customSheetPaymentInfo = new CustomSheetPaymentInfo.Builder()
 .setMerchantId("123456")
 .setMerchantName(“Sample Merchant”)
 .setOrderNumber(“AMZ007MAR”)
 .setPaymentProtocol(CustomSheetPaymentInfo.PaymentProtocol.PROTOCOL_3DS)
 // Show both billing and shipping address
 .setAddressInPaymentSheet(CustomSheetPaymentInfo.AddressInPaymentSheet.NEED_BILLING_AND_SHIPPING)
 .setAllowedCardBrands(bList)
 .setCardHolderNameEnabled(true)
 .setRecurringEnabled(false)
 .setCustomSheet(customSheet)
 .build();
 return customSheetPaymentInfo;
}

Next, the aggregator PG’s SDK will need to support the mechanisms needed to create the transaction request.

Creating the transaction request. Request a transaction using the startInAppPayWithCustomSheet() method of PaymentManager.
The payment sheet UI will persist for 5 minutes after the API is called. If the timer expires, the transaction fails.

private PaymentManager.CustomSheetTransactionInfoListener transactionListener =
 new PaymentManager.CustomSheetTransactionInfoListener() {
 @Override
 public void onCardInfoUpdated(CardInfo selectedCardInfo, CustomSheet customSheet) {
 AmountBoxControl amountBoxControl = (AmountBoxControl)
 customSheet.getSheetControl(AMOUNT_CONTROL_ID);
 customSheet.updateControl(amountBoxControl);
 try {
 paymentManager.updateSheet(customSheet);
 } catch (IllegalStateException | NullPointerException e) {
 e.printStackTrace();
 }
 }

Aggregator PG Onboarding and Integration Samsung Pay

Page | 21

 // Receive callback when payment is approved
 @Override
 public void onSuccess(CustomSheetPaymentInfo response, String paymentCredential,
 Bundle extraPaymentData) {
 try {
 String DPAN = response.getCardInfo().getCardMetaData().getString(SpaySdk.EXTRA_LAST4_DPAN,
 "Null");
 String FPAN = response.getCardInfo().getCardMetaData().getString(SpaySdk.EXTRA_LAST4_FPAN,
 "Null");
 Snackbar.make(fragmentView, " DPAN: " + DPAN + " FPAN: " + FPAN,
 Snackbar.LENGTH_LONG).setAction(getString(R.string.ok), new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 }
 }).show();
 } catch (NullPointerException e) {
 e.printStackTrace();
 }
 Toast.makeText(context, "Transaction : onSuccess", Toast.LENGTH_LONG).show();
 }

 // Receive callback if transaction fails
 @Override
 public void onFailure(int errorCode, Bundle errorData) {
 Toast.makeText(context, "Transaction : onFailure : "+ errorCode, Toast.LENGTH_LONG).show();
 }
 };

 // Start the transaction request
 private void startInAppPayWithCustomSheet() {
 // Show payment sheet
 try {
 Bundle bundle = new Bundle();
 bundle.putString(SamsungPay.PARTNER_SERVICE_TYPE, SamsungPay.ServiceType.INAPP_PAYMENT.toString());
 final PartnerInfo partnerInfo = new PartnerInfo(serviceId, bundle);
 paymentManager = new PaymentManager(context, partnerInfo);
 // Populate the payment sheet
 paymentManager.startInAppPayWithCustomSheet(makeCustomSheetPaymentInfo(),
 transactionListener);
 } catch (NullPointerException e) {
 Toast.makeText(context, SHORTTAG + "Mandatory fields cannot be null.",
 Toast.LENGTH_LONG).show();
 e.printStackTrace();
 } catch (IllegalStateException e) {
 Toast.makeText(context, SHORTTAG + "IllegalStateException", Toast.LENGTH_LONG).show();
 e.printStackTrace();
 } catch (NumberFormatException e) {
 Toast.makeText(context, SHORTTAG +
 "Amount values are not valid",
 Toast.LENGTH_LONG).show();
 e.printStackTrace();

Page | 22

Samsung Pay Aggregator PG Onboarding and Integration

 } catch (IllegalArgumentException e) {
 Toast.makeText(context, SHORTTAG +
 "Not all mandatory fields set or invalid.",
 Toast.LENGTH_LONG).show();
 e.printStackTrace();
 }
 }

Shown in Figure 12, when you call the startInAppPayWithUserInfo() method, the Samsung Pay payment sheet is displayed as an overlay
on the merchant app’s screen; from it, the user can select a card for payment and/or change the billing address/shipping address. As
discussed earlier (Use Case #2), the result of user interaction with the sheet is delivered through a CustomSheetTransactionInfoListener
object. When a valid Samsung Pay user authenticates, the paymentCredential is returned within the onSuccess() event.

Figure 12. Standard Payment Sheet UI

Handling user-entered changes
SheetUpdatedListener captures the response from the Samsung Pay app whenever the user makes allowed changes on the payment
sheet UI. When a change is made, use the updateSheet() method to update the payment sheet, even if there is no change in price. You
can also use updateSheet() when the user changes the shipping address to an invalid or undeliverable address.

The following example demonstrates how to handle a change in the selected card and displays an error message about a shipping
address that is ineligible for free shipping.

@Override
public void onCardInfoUpdated(CardInfo selectedCardInfo, CustomSheet customSheet) {
 AmountBoxControl amountBoxControl = (AmountBoxControl) customSheet.getSheetControl(AMOUNT_CONTROL_ID);
 if (amountBoxControl == null) {
 Log.d(TAG, "Transaction : Failed / amountBoxControl is null.");
 return;
 }

Aggregator PG Onboarding and Integration Samsung Pay

Page | 23

 // Update the amount info on payment sheet based on user changes
 amountBoxControl.updateValue(PRODUCT_ITEM_ID, 100);
 amountBoxControl.updateValue(PRODUCT_TAX_ID, 7.45);
 amountBoxControl.updateValue(PRODUCT_SHIPPING_ID, 10);
 amountBoxControl.setAmountTotal(117.45, AmountConstants.FORMAT_TOTAL_PRICE_ONLY);
 customSheet.updateControl(amountBoxControl);
 // Call updateSheet() with a CUSTOM_MESSAGE error code to display a text message.
 paymentManager.updateSheet(customSheet, PaymentManager.CUSTOM_MESSAGE,
 "Delivery address is not eligible for free shipping.");
}

Configuring payment sheet controls
The CustomSheet object sent in a startInAppPayWithCustomSheet() method (Use Case #3) supports four sheet controls —
AddressControl, SpinnerControl, PlainTextControl, and AmountBoxControl. By contrast, the CustomSheet object sent in a
startInAppPayWithUserInfo() call (Use Case #2) restricts support to AddressControl and AmountBoxControl only.

AddressControl. This control is used to display the billing or shipping address from Samsung Pay’s My info user profile, or else the
user’s addresses provided by the merchant app during the transaction request.

When creating the control, a controlId and SheetItemType are needed to distinguish the billing address from the shipping address.
Otherwise, the merchant app sets the following properties:

• Address title – displays a merchant-defined title on the payment sheet. If empty, the default title “Billing address” is displayed.

• Address – provides the method to retrieve address details.

• SheetUpdatedListener – captures the response from the Samsung Pay app; the merchant app must configure an
AmountBoxControl to display payment information on the custom payment sheet. When the onResult() callback is
received, updateSheet() must also be called to update the current payment sheet, unless for Use Case #2, sheet updates are
turned off with RequestType.NO_SHEET_UPDATE_CALLBACK.

• ErrorCode – carries error codes directly related to the address.

Here’s sample code demonstrating construction of the AddressControl for both the billing and shipping addresses. Again, construction
of the payment sheet can be handled directly by the merchant app if it adds samsungpay.jar as an external library.

// For billing address
private AddressControl makeBillingAddressControl() {
 AddressControl billingAddressControl = new AddressControl(BILLING_ADDRESS_ID,
 SheetItemType.BILLING_ADDRESS);
 billingAddressControl.setAddressTitle("Billing Address");
 //This callback is received when control is updated in Samsung Pay
 billingAddressControl.setSheetUpdatedListener(new SheetUpdatedListener() {
 @Override
 public void onResult(String updatedControlId, CustomSheet customSheet) {
 Log.d(TAG,"onResult billingAddressControl updatedControlId: " + updatedControlId);

 // Validate billing address and set errorCode, as needed
 AddressControl addressControl =
 AddressControl.customSheet.getSheetControl(updatedControlId);
 CustomSheetPaymentInfo.Address billAddress = addressControl.getAddress();
 int errorCode = validateBillingAddress(billAddress);
 Log.d(TAG, "onResult updateSheetBilling errorCode: " + errorCode);

Page | 24

Samsung Pay Aggregator PG Onboarding and Integration

 addressControl.setErrorCode(errorCode);
 customSheet.updateControl(addressControl);

 // update transaction values if changes are made to address-- mandatory
 /* AmountBoxControl amountBoxControl = (AmountBoxControl)
 * CustomSheet.getSheetControl(AMOUNT_CONTROL_ID);
 * amountBoxControl.updateValue(PRODUCT_ITEM_ID, 1000);
 * amountBoxControl.updateValue(PRODUCT_TAX_ID, 50);
 * amountBoxControl.updateValue(PRODUCT_SHIPPING_ID, 10);
 * amountBoxControl.updateValue(PRODUCT_FUEL_ID, 0, "Pending");
 * amountBoxControl.setAmountTotal(1060, AmountConstants.FORMAT_TOTAL_PRICE_ONLY);
 * customSheet.updateControl(amountBoxControl);
 */

 // Call updateSheet for the full AmountBoxControl; mandatory if updated above
 try {
 paymentManager.updateSheet(customSheet);
 } catch (IllegalStateException | NullPointerException e) {
 e.printStackTrace();
 }
 }
 });
 return billingAddressControl;
}

// For Shipping address
private AddressControl makeShippingAddressControl() {
 AddressControl shippingAddressControl = new AddressControl(SHIPPING_ADDRESS_ID,
 SheetItemType.SHIPPING_ADDRESS);
 shippingAddressControl.setAddressTitle("Shipping Address");
 CustomSheetPaymentInfo.Address shippingAddress = new CustomSheetPaymentInfo.Address.Builder()
 .setAddressee("Carol Customer")
 .setAddressLine1("675 East Middlefield Road")
 .setAddressLine2("")
 .setCity("Mountain View")
 .setState("CA")
 .setCountryCode("USA")
 .setPostalCode("94043")
 .setPhoneNumber("555-123-1234")
 .setEmail("carol@provider.com")
 .build();
 shippingAddressControl.setAddress(shippingAddress);
 /*
 * Set address display options for payment sheet; otherwise, default addressControl is displayed
 * Possible values are any combination of these constants:
 * {DISPLAY_OPTION_ADDRESSEE}
 * {DISPLAY_OPTION_ADDRESS}
 * {DISPLAY_OPTION_PHONE_NUMBER}
 * {DISPLAY_OPTION_EMAIL}
 */

Aggregator PG Onboarding and Integration Samsung Pay

Page | 25

 int displayOption_val = AddressConstants.DISPLAY_OPTION_ADDRESSEE; // Addressee is mandatory
 displayOption_val += AddressConstants.DISPLAY_OPTION_ADDRESS;
 displayOption_val += AddressConstants.DISPLAY_OPTION_PHONE_NUMBER;
 displayOption_val += AddressConstants.DISPLAY_OPTION_EMAIL;
 shippingAddressControl.setDisplayOption(displayOption_val);
 return shippingAddressControl;
}

SpinnerControl. The SpinnerControl is used to list various options such as shipping method or installment/subscription plan. It
requires a controllId, title, and SheetItemType to distinguish between the spinners displayed (i.e., shipping method or payment plan).
The SHIPPING_METHOD_SPINNER type can only be used when the shipping address comes from the Samsung Pay app; i.e., when the
CustomSheetPaymentInfo.AddressInPaymentSheet option is set to NEED_BILLING_AND_SHIPPING or NEED_SHIPPING_SPAY.

Here’s sample code demonstrating how to structure a SpinnerControl.

// Construct shipping method
SpinnerControlSpinnerControl spinnerControl = new SpinnerControl(SHIPPING_METHOD_SPINNER_ID,
 "Shipping Method ", SheetItemType.SHIPPING_METHOD_SPINNER);
spinnerControl.addItem("shipping_method1", getString(R.string.standard_shipping_free));
spinnerControl.addItem("shipping_method2", getString(R.string.twoday_shipping));
spinnerControl.addItem("shipping_method3", getString(R.string.oneday_shipping));
// Set default option
spinnerControl.setSelectedItemId("shipping_method1");
// Then listen for SheetControl events
spinnerControl.setSheetUpdatedListener(new SheetUpdatedListener() {
 @Override
 public void onResult(String updatedControlId, CustomSheet customSheet) {
 AmountBoxControl amountBoxControl =
 (AmountBoxControl) customSheet.getSheetControl(AMOUNT_CONTROL_ID);
 SpinnerControl spinnerControl =
 (SpinnerControl) customSheet.getSheetControl(updatedControlId);
 switch (spinnerControl.getSelectedItemId()) {
 case "shipping_method1": amountBoxControl.updateValue(PRODUCT_SHIPPING_ID, 10);
 break;
 case "shipping_method2": amountBoxControl.updateValue(PRODUCT_SHIPPING_ID, 10 + 0.1);
 break;
 case "shipping_method3": amountBoxControl.updateValue(PRODUCT_SHIPPING_ID, 10 + 0.2);
 break;
 default: amountBoxControl.updateValue(PRODUCT_SHIPPING_ID, 10);
 break;
 }
 amountBoxControl.setAmountTotal(1000 + amountBoxControl.getValue(PRODUCT_SHIPPING_ID),
 AmountConstants.FORMAT_TOTAL_PRICE_ONLY);
 customSheet.updateControl(amountBoxControl);
 // Update the payment sheet. Mandatory.
 try {
 paymentManager.updateSheet(customSheet);
 } catch (IllegalStateException | NullPointerException e) {
 e.printStackTrace();
 }
 }
});

Page | 26

Samsung Pay Aggregator PG Onboarding and Integration

PlainTextControl. This control is used for displaying a title with two lines of text or a single line of text without a title. A controlId is
required. Otherwise, the merchant app sets both the title, as appropriate, and a line or two of special informative messaging to the user.

private PlainTextControl makePlainTextControl() {
 PlainTextControl plainTextControl = new PlainTextControl("ExamplePlainTextControlId");
 plainTextControl.setText("Just for you:", "Save 10% on orders of $100 or more!");
 return plainTextControl;
}

AmountBoxControl. This control is used for displaying purchase amount information on the payment sheet. It requires a controlId
and a currencyCode, and consists of Item(s) and AmountTotal, defined as follows:

• Item – consists of id, title, price, and extraPrice. If there is an extraPrice in AmountBoxControl, its text is displayed on the
payment sheet even though there is an actual (numerical) price value. If there is no extraPrice, then currencyCode with the
price value is displayed.

• AmountTotal – consists of price and displayOption. The displayOption allows predefined strings only. Your merchant app
can set the text to “Estimated amount”, “Amount pending”, “Pending”, “Free”, and so forth. The UI format for the string is
different for each option.

Note: The setAmountTotal API will accept strings that are not predefined as an argument, although execution will generate
an invalid parameter condition and return an error code. It’s also important to point out that, depending on the merchant app’s
preference/policy regarding the transaction details to display in the payment sheet for user authorization, only the transaction’s
AmountTotal may be needed.

Here’s how to build the AmountBoxControl:

private AmountBoxControl makeAmountControl() {
 AmountBoxControl amountBoxControl = new AmountBoxControl(AMOUNT_CONTROL_ID, “USD”);
 amountBoxControl.addItem(PRODUCT_ITEM_ID, “Items”, 1000, “”);
 amountBoxControl.addItem(PRODUCT_TAX_ID, “Tax”, 50, “”);
 amountBoxControl.addItem(PRODUCT_SHIPPING_ID, “Shipping”, 10, “”);
 amountBoxControl.setAmountTotal(1060, AmountConstants.FORMAT_TOTAL_PRICE_ONLY);
 amountBoxControl.addItem(3, PRODUCT_FUEL_ID, “FUEL”, 0, “Pending”);
 return amountBoxControl;
}

Important: Call the updateValue(item_id) method of AmountBoxControl to update each amount item if the item/
value changes, then call CustomSheet.updateControl() to make the changes take effect in Samsung Pay. Eventually,
PaymentManager.updateSheet(CustomSheet) must be called to let Samsung Pay know that no further action is pending in the
merchant app.

 // Update items/values
 amount.updateValue(“shippingId”, 10);
 amount.updateValue(“fuelId”, 0);
 amount.setAmountTotal(1000, AmountConstants.FORMAT_TOTAL_PRICE_ONLY);

 sheet.updateControl(amount);
 // Call updateSheet; mandatory whenever values change
 try {
 paymentManager.updateSheet(sheet);
 } catch (IllegalStateException | NullPointerException e) {
 e.printStackTrace();
 }

Aggregator PG Onboarding and Integration Samsung Pay

Page | 27

For all SheetControls, consult your Javadoc API reference in the Documents folder of your SDK package for additional/supplemental
guidance.

Sample payment credential
The paymentCredential structure will vary depending on the PG’s policies/practices currently in place. The following example for a Visa
card, representing what is typically sent to a PG in network token (direct) mode — e.g., First Data — is included here strictly to illustrate
the general form.

Decrypt using the merchant’s private key.

-----BEGIN RSA PRIVATE KEY-----
MIIEowIBAAKCAQEA4LZYjQR+dqd/XLEOXct9jwTJXHD2PTJke9djtMIjKi0h2Oc2GHoW4uJHHY/1jvFt2+zCnjTOXuVLp+76/
DWA3bCwFRj+fPP6x5KKYlPb+dJDYo1TTumltNqCWymJB3u7jBC+xR4vKfRzqjxkE7xhN/SBb82uE8c3sMzVKYnUJi<…>
-----END RSA PRIVATE KEY-----

The decrypted result will look similar to the following example. See Samsung Pay token data for other items that can be included.

{
 "amount":"1000",
 "currency_code":"USD",
 "utc":"1490266732173",
 "eci_indicator":"5",
 "tokenPAN":"1234567890123456",
 "tokenPanExpiration":"0420",
 "cryptogram":"AK+zkbPMCORcABCD3AGRAoACFA=="
}

In gateway token (indirect) mode — e.g., Stripe, Braintree — paymentCredential is the PG’s token reference ID and its status. Here is an
example of the JSON output.

{
 "reference":"tok_18rje5E6SzUi23f2mEFAkeP7",
 "status":"AUTHORIZED"
}

Page | 28

Samsung Pay Aggregator PG Onboarding and Integration

The merchant app should be able to pass this token object directly to Charge or another appropriate payment processing API your PG
SDK provides in support of gateway tokens.

Testing and validating your SDK-SDK integration
Testing your integrated SDK for merchant aggregation is crucial in validating Samsung Pay transaction performance and ensuring a
positive payment experience for your merchant partners and their customers. Over the course of the validation process, it’s important
to remember that the goal of testing is not merely to find errors and bugs but to fully understand the quality of your integrated solution.

Testing prerequisites
Given that all PG partners are somewhat different, Samsung Pay can only prescribe a general strategy for merchant aggregation testing,
execution, and management in the form of “Best Practices.” The general guidelines offered here are designed to furnish a baseline for
testing and acceptance from which all partners can benefit. With that goal in mind, the following prerequisites/preconditions should be
in place:

• At least one sample merchant app integrated with the PG SDK and Samsung Pay SDK added as third-party libraries.

• At least one Samsung Pay eligible test device plus one ineligible device, both supporting a sample merchant app to test
Samsung Pay app status retrieval accuracy.

• One or more Samsung Pay test accounts

• One or more payment cards for each card brand supported by the PG, enrolled under the Samsung Pay test accounts.

• PG sandbox connectivity to validate gateway and network token processing and reporting.

Note: In your sandbox environment, have Samsung Pay return valid testing nonces that point to dummy account data, then make sure
that the card selected in Samsung Pay is not charged.

General test conditions and objectives
The objective of any test is to verify the functionality being examined and validate the result produced. All tests should execute and verify
test scripts, identifying, fixing, and then retesting all high and medium severity defects in accordance with specific test criteria. Here are
some general test conditions and the expected result:

Condition/Criteria Expected Result
Device ineligible No Samsung Pay button displayed
Device eligible, Samsung Pay app active ("ready"), eligible payment
card present

Samsung Pay button displayed

Device eligible, Samsung inactive ("not ready") Samsung Pay button displayed but not activate for tapping;
message should read: "Please install/activate the Samsung
Pay app to continue."

Recommended test cases

At a minimum, the following best practices are recommended for testing your app’s integration with Samsung Pay:

• Test with the Samsung Pay app present (installed) on the device, then not installed on device

• Test when the Samsung Pay app is registered and active with enrolled cards present, with no enrolled cards present, and
then test when the Samsung Pay app is present but inactive (no registered user)

• Test with supported cards present (enrolled), then with no supported cards present

• Test transactions with all PG-supported card brands

Aggregator PG Onboarding and Integration Samsung Pay

Page | 29

• Validate correct display of user profile information and payment information, if configured

• Test correct display and performance of payment sheet controls (AmountBoxControl, AddressControl), when applied.

• Test user card selection in payment sheet

• Test accuracy of user-entered edits and changes

• Validate all results received by and from the aggregator PG.

Collecting and sending device dump state (SYSDUMP) logs

To collect a log, complete the following steps:

1. Reproduce the issue.

2. Launch the Phone dialer app and dial *#9900#.

3. From the menu, select RUN DUMPSTATE.
(Generating the log will take a few minutes. Be patient.)

4. From the Dump Result message, note the file name and saved location (typically, /data/log/<filename>.log).

5. Copy the log to your PC via USB connection, then zip and send to Samsung Pay.

If you are unable to see or copy the log file, select COPY TO SDCARD during #5 above.

Deployment
The decision to release for merchant adoption will be made jointly by the PG with Samsung Pay in accordance with governing agreements.

Branding
Branding specifications and display guidelines are available at https://pay.samsung.com/developers/resource/brand. You can also click
Branding guidelines under RESOURCES after signing in. Here, you can download the full Branding Guide for Samsung Pay, as well as
the collection of approved assets.

https://pay.samsung.com/developers/resource/brand

About Samsung Electronics Co., Ltd.

Samsung Electronics Co., Ltd. is a global leader in technology, opening new possibilities for people everywhere. Through relentless
innovation and discovery, we are transforming the worlds of televisions, smartphones, personal computers, printers, cameras, home
appliances, LTE systems, medical devices, semiconductors, and LED solutions. We employ more than 250,000 people across 79 countries
with annual sales exceeding KRW 240 trillion. To discover more, please visit www.samsung.com.

For more information about Samsung Pay, visit http://www.samsung.com/us/samsung-pay/.

Copyright © 2019 Samsung Electronics Co., Ltd. All rights reserved. Samsung is a registered trademark of Samsung Electronics Co., Ltd.
Samsung Pay, Samsung KNOX, and Magnetic Secure Transmission (MST) are trademarks of Samsung Electronics Co., Ltd. in the United
States and other countries. Specifications and designs are subject to change without notice. Non-metric weights and measurements are
approximate. All date were deemed correct at the time of creation. Samsung is not liable for errors or omissions. Android and Google
Play are trademarks of Google Inc. ARM and TrustZone are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/
or elsewhere. American Express is a registered trademark of the American Express Company. MasterCard is a registered trademark
of MasterCard. Visa is a registered trademark of Visa, Inc. NFC Forum and the NFC Forum logo are trademarks of the Near Field
Communications Forum. All brands, products, service names, and logos are trademarks and/or registered trademarks of their respective
owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd.
416, Maetan 3-dong, Yeongtong-gu
Suwon-si, Gyeonggi-do 443-772, Korea

With respect to this “PG Merchant Aggregator Onboarding Guide for In-App Payments and Account Preprovisioning” and any other documents available
from this site or server, neither Samsung nor any of its affiliates or employees makes any warranty, express or implied, including the warranties
of merchantability and fitness for a particular purpose, or assumes any legal liability or responsibility for the accuracy, correctness, completeness or
usefulness of any information, product, technology or process disclosed.

DISCLAIMER

